

Zigbee[®] Packet Analysis

Introduction

This application note provides details about how to configure and use supported sniffing tools along with Microchip MCU-based sniffer hardware platforms. In Zigbee[®] networking, a sniffing tool (for example, Wireshark Network Protocol Analyzer (Wireshark)) is important during the development and testing phase to capture and analyze the frames exchanged in the network. Wireshark is more significant in networks with the Zigbee products from different vendors to test and verify as they are interoperable with one another. This application note mainly focuses on the packet capture using the Wireshark.

Wireshark is a free and open-source packet analyzer. The wireless network sniffer environment is set up by running the Wireshark on the PC. The following are the uses of the Wireshark:

- Network troubleshooting
- Analysis
- · Software and communications protocol development
- Education

The Wireshark Sniffer Interface Tool connects the Wireshark Graphical User Interface (GUI) and the sniffer firmware running on the ZigBit USB stick. It enables communication between the Wireshark Sniffer Interface Tool application running on the PC and sniffer hardware. The Wireshark Sniffer Interface Tool is capable of real-time capture of frame formats supported by the Zigbee protocol and the IEEE[®] 802.15.4 standard. It also provides parsed information of different fields and sub-fields of the frame that helps the user in quick analysis.

Features

- Network Topology
- Time Stamping
- Multi-Channel Capture

Table of Contents

Intr	oductic	on	1
Fea	tures		1
1.	Quick	References	4
	1.1.	Reference Documentation	4
	1.2.	Hardware Requirements	4
	1.3.	Software Requirements.	4
	1.4.	Acronyms and Abbreviations	4
2.	Wires	hark Network Protocol Analyzer and Wireshark Sniffer Interface Tool Overview	6
	21	Supported Sniffer Hardware Platforms	6
	22	Getting Started with Wireshark Tool and Wireshark Sniffer Interface Tool	
	2.3	Elashing the Firmware into ZigBit USB Stick	13
0	0:		40
3.	Sniffe	r Capture Session Setup	16
	3.1.	Wireshark Packet Capture Procedure	16
4.	Config	guring Sniffer Preferences	21
	4.1.	Wireshark Capture Interface	21
5.	Analy	zing Data Traffic in Zigbee Pro Networks	24
	5.1.	Zigbee Frame Format Overview	24
	5.2.	MAC Association	24
	5.3.	Self-Leave and Parent-Induced Leave	26
	5.4.	Network (NWK) Link Status Frame	
	5.5.	Multicast	
	5.6.	Fragmentation	
	5.7.	Service Discovery	30
	5.8.	Tunneling in Secure Networks	30
6.	Analy	zing Data Traffic in Zigbee 3.0 Protocol	32
0.	6 1	Ceneral Description	30
	6.2	Zighee Coordinator	36
	63	Zigbee Bouter	
	6.4	Zighee End Device	
	6.5.	Touchlink Commissioning	
7.	Fxam	ple Application Scenarios	58
	7 1	Personal Area Network (PAN) Same Channel Co. Evistence	52
	7.1.	End-to-End Establishment of Application Link Key	
•	,. <u>.</u> .		
8.	Zigbe	e Green Power	60
	ö.1.	Uniquectional Commissioning.	
	8.2.	Bigirectional Commissioning	
	8.3.	Basic Commissioning (Channel Configuration)	61
	8.4.	Data Transmission	62

9.	Document Revision History	.63
Mic	ochip Information	.64
	The Microchip Website	.64
	Product Change Notification Service	. 64
	Customer Support	. 64
	Microchip Devices Code Protection Feature	.64
	Legal Notice	. 64
	Trademarks	. 65
	Quality Management System	. 66
	Worldwide Sales and Service	67

1. Quick References

1.1 Reference Documentation

For further details, refer to the following:

- AT08550: ZigBee Attribute Reporting Application Note (42334)
- Atmel AT02597: ZigBee PRO Packet Analysis with Sniffer Application Note (32210)
- Atmel-ICE Programmers and Debuggers User Guide (42330)
- PRO Base Device Behavior Specification (3.0.1)
- ZigBee Alliance Cluster Library Specification Revision 8 (075123)
- Matter Device Library Specification (1.0)
- Zigbee PRO Green Power feature specification Basic functionality set (Version 1.1.1)
- Zigbee Specification Revision 22 1.0 (05-3474-22)
- ZigBit USB Stick User Guide (42194)

1.2 Hardware Requirements

- 50-mil 10-pin IDC flat cable
- ATMEL-ICE (ATATMEL-ICE)
- ATXMEGA256A3U and AT86RF212B ZIGBIT USB Stick (ATZB-X-212B-USB)
- ATXMEGA256A3 and AT86RF233 ZIGBIT USB Stick (ATZB-X-233-USB)
- Micro-AB USB cable

1.3 Software Requirements

- Microchip Studio (7.0.2594)
- Windows 10
- Wireshark (3.6.8)
- Wireshark Sniffer Interface Tool (v3.0.0.10)

1.4 Acronyms and Abbreviations

Table 1-1. Acronyms and Abbreviations

Acronyms and Abbreviations	Description
API	Application Programming Interface
APL	Application Layer
APS	Application Support Sub-Layer
BDB	Base Device Behavior
GP	Green Power
GPC	Green Power Combo
GPD	Green Power Device
GPP	Green Power Proxy
GPS	Green Power Sink

continued			
Acronyms and Abbreviations	Description		
GUI	Graphical User Interface		
NWK	Network		
PAN	Personal Area Network		
USB	Universal Serial Bus		
ZCL	Zigbee [®] Cluster Library		
ZDO	Zigbee Device Object		
ZDP	Zigbee Device Profile		

2. Wireshark Network Protocol Analyzer and Wireshark Sniffer Interface Tool Overview

This chapter provides an overview of the Wireshark Network Protocol Analyzer (Wireshark) and Wireshark Sniffer Interface Tool setup along with their respective components. By default, the Wireshark and Wireshark Sniffer Interface Tool installs the package in the *C*:*Program Files*\ and *C*:*Program Files*\, respectively.

Table 2-1. Wireshark Package Files

File Name	Description
Wireshark-winXX-3.X.X.exe file	Wireshark executable file

Table 2-2. Wireshark Sniffer Interface Tool Package Files

File Name/Folder Name		Description	
Wireshark Sniffer Interface Tool v3.0.0.10.exe		Wireshark Sniffer Interface Tool executable file	
C:\Program Files (x86)	Atmel Wireshark Sniffer Firmware	—	
Atmel/Atmel Wireshark Sniffer Interface Tool Folder	Atmel_Wireshark_Sniffer_Interface.exe	Wireshark Sniffer Interface tool executable file	
	Atmel_Wireshark_Sniffer_Interface.exe.config	Atmel Wireshark Sniffer Interface framework configuration file	
	Release Notes.txt	 Contains release and version information for the Wireshark Sniffer Interface Tool To capture/sniff IEEE[®] 802.15.4 frames (2.4 GHz and Sub-GHz) 	
	System.Xaml.dll	-	
C:\Program Files (x86) \Atmel\Atmel Wiresbark	AWSI_at32uc3a3256s_rz600_at86rf212.hex	Sniffer firmware for RZ600	
Sniffer Interface Tool\Atmel Wireshark	AWSI_at32uc3a3256s_rz600_at86rf231.hex	details, refer to the ATAVRRZ600.	
Snimer Firmware Folder	AWSI_atxmega256a3u_rf212b_zigbit_usb.hex	ZigBit USB stick firmware for Sub-GHz	
	AWSI_atxmega256a3u_rf233_zigbit_usb.hex	ZigBit USB stick firmware for 2.4 GHz sniffers	

2.1 Supported Sniffer Hardware Platforms

To start with capturing frames on an IEEE 802.15.4 channel, the user must have a sniffer hardware tool running a sniffer firmware plugged into the PC. The following are the supported sniffer hardware platforms:

- RF212B ZigBit USB stick For sniffing IEEE 802.15.4 Sub-GHz channels
- RF233 ZigBit USB stick For sniffing IEEE 802.15.4 2.4 GHz channels

Figure 2-1. Supported Sniffer Hardware Platforms – ZigBit USB Stick (RF212B/RF233 – Sub-GHz/2.4 GHz)

Use the Wireshark Sniffer Interface Tool to create capture sessions for IEEE 802.15.4 channels in 2.4 GHz and Sub-GHz range. The Wireshark Sniffer Interface Tool supports ATXMEGA256A3U_RF212B and ATXMEGA256A3U_RF233.

2.2 Getting Started with Wireshark Tool and Wireshark Sniffer Interface Tool

2.2.1 Wireshark Installation Procedure

For downloading Wireshark, go to Wireshark. Fore more details about Wireshark, go to Wireshark.

Note: The stable release version of the Wireshark is version 3.6.6, or the user can also install the latest development release available from the official Wireshark website on the PC.

The following are the steps to install the Wireshark:

- 1. Double click the Wireshark-winXX-3.X.X.exe to start the installation procedure.
- 2. Click **Next** to continue.

Figure 2-2. Wireshark Setup Window

🧲 Wireshark 3.6.8 64-bit Setup	- 🗆 X
	Welcome to Wireshark 3.6.8 64-bit Setup
	This wizard will guide you through the installation of Wireshark.
	Before starting the installation, make sure Wireshark is not running.
	Click 'Next' to continue.
	2 Next > Cancel

Note: The user can use the latest version of Wireshark available.

3. Click **Noted** to continue.

Figure 2-3. Wireshark – License Agreement

🚄 Wireshark 3.6.8 64-bit Setup —	\times
License Agreement Please review the license terms before installing Wireshark 3.6.8 64-bit.	
Wireshark is distributed under the GNU General Public License.	
This text consists of three parts:	^
Part I: Some remarks regarding the license given in Part II: The actual license that covers Wireshark. Part III: Other applicable licenses. When in doubt: Part II/III is the legally binding part, Part I is just there to make it easier for people that are not familiar with the GPLv2.	~
This is not an end user license agreement (EULA). It is provided here for informational purposes only.	ancel

4. Under the "Select components to install:" field, check the respective components to install along with the tool. Click **Next** to continue.

Figure 2-4. Wireshark – Choose Components

属 Wireshark 3.6.8 64-bit Setup			\times
Choose Components			
Choose which features of Wires	shark 3.6.8 64-bit you want to install.		
The following components are	available for installation.		
Select components to install:	✓ Wireshark ✓ TShark		
	Description		
Space required: 224.1 MB	Position your mouse over a component to see description.	its	
Wireshark® Installer	+	_	
	< Back Next >	Car	ncel

5. Under the "**Create Shortcuts**" field, check the required shortcuts, and under the "**Associate File Extensions**" field, check *Associate trace file extensions with Wireshark*. Click **Next** to continue.

Figure 2-5. Wireshark – Additional Tasks

🚄 Wireshark 3.6.8 64-bit Setup —		\times
Additional Tasks Create shortcuts and associate file extensions.		
Create Shortcuts		
✓ Wireshark Start Menu Item		
✓ Wireshark Desktop Icon		
✓ Wireshark Quick Launch Icon		
Associate File Extensions		
✓ Associate trace file extensions with Wireshark		
Extensions include 5vw, acp, apc, atc, bfr, cap, enc, erf, fdc, ipfix, lcap, mplog, ntar, out, pcap, pcapng, pklg, pkt, rf5, snoop, syc, tpc, tr1, trace, vwr, wpc, and wpz.	trc,	
Wireshark® Installer		
< Back Next >		Cancel

6. Install the Wireshark in the default location under the "Destination Folder" field: C:\Program Files\Wireshark . Click Next to continue.

Figure 2-6. Wireshark – Install Location

📕 Wireshark 3.6.8 64-bit Setup	-	-	×
Choose Install Location			
Choose the folder in which to install Wireshark 3.6.8 64-bit.			
Choose a directory in which to install Wireshark.			
Destination Folder			
C:\Program Files\Wireshark		Browse.	
Space required: 224.1 MB	0		
Space available: 5.7 GB	b L		
Wireshark® Installer			
< Back	Next >		Cancel

7. Install "Npcap" or "WinPcap" to capture live network data. In this scenario, it is *Npcap 1.60*. Click **Next** to continue. (Optional)

Figure 2-7. Wireshark – Packet Capture

Wireshark 3.6.8 64-bit Setup		_		\times
Packet Capture Wireshark requires either Npcap or WinPcap to capt	ure live netwo	ork data.		
Currently installed Npcap version Npcap 1.60				
Install Install Npcap 1.60 If you wish to install Npcap, please uninstall i	Npcap manual	lly first.		
Important notice If your system has crashed during a Wireshark in 'net stop npcap' as Administrator before upgradi	nstallation, yo ng Npcap, so	u must run the o that it doesn't cr	command rash again	
Get WinPcap		7		
/ireshark® Installer		↓		
	< Back	Next >	Can	cel

8. Install "USBPcap" to capture USB traffic. In this scenario, under the "Install" field, check *Install USBPcap 1.5.4.0*. Click **Install** to continue. (Optional)

Figure 2-8. Wireshark – USB Capture

🚄 Wireshark 3.6.8 64-bit Setup —	×
USB Capture USBPcap is required to capture USB traffic. Should USBPcap be installed (experimental)?	
Currently installed USBPcap version USBPcap is currently not installed	
Install ✓ Install USBPcap 1.5.4.0 (Use Add/Remove Programs first to uninstall any undetected old USBPcap versions)	
Important notice In case of issue after installation, please use the system restore point created or read https://github.com/desowin/usbpcap/issues/3	
Learn more about USBPcap Wireshark® Installer	

9. The user must wait for the completion of the Wireshark installation procedure. After the installation procedure completes, click **Next** to continue.

Figure 2-9. Wireshark – Installing

Wireshark 3.6.8 64-bit Setup		_	-	
nstalling Please wait while Wireshark 3.6.8 64-bit is bein	ig installed.			L
Execute: "C:\Program Files\Wireshark\vc_redist	t.x64.exe" /insta	ll /quiet /nore	start	
Extract: services				^
Extract: pdml2html.xsl				
Extract: ws.css				
Extract: wireshark.html				
Extract: wireshark-filter.html				
Extract: dumpcap.exe				
Extract: dumpcap.html				
Extract: extcap.html				
Extract: ipmap.html				
Extract: vc_redist.x64.exe 100%				
Execute: "C:\Program Files\Wireshark\vc_redi	st.x64.exe" /inst	all /quiet /nor	estart	\sim
)		
eshark® Installer			_	
	< Back	Next >		Cancel

10. Click **Finish** to complete the Wirehsark setup.

Figure 2-10. Wirehark Completing Setup

🚄 Wireshark 3.6.8 64-bit Setup	×
	Completing Wireshark 3.6.8 64-bit Setup
	Wireshark 3.6.8 64-bit has been installed on your computer.
	Click Finish to close Setup.
	Show News
	10
	< Back Finish Cancel

2.2.2 Wireshark Sniffer Interface Tool Installation

The user must install the Wireshark Sniffer Interface Tool to set up a capture session using Wireshark. For downloading the Wireshark Sniffer Interface Tool, go to Wireshark Sniffer Interface Tool v3.0.0.10.

The following are the steps to install the Wireshark Sniffer Interface Tool:

- 1. Double click the Atmel Wireshark Sniffer Interface Tool.exe to start the installation procedure.
- 2. Click **Next** to continue.

Figure 2-11. Wireshark Sniffer Interface Tool InstallShield Wizard

Hatmel Wireshark Sniffer Interfa	ce Tool - InstallShield Wizard	X
2	Welcome to the InstallShield Wizard for Atmel Wireshark Sniffer Interface Tool The InstallShield(R) Wizard will install Atmel Wireshark Sniffer Interface Tool on your computer. To continue, click Next.	
	WARNING: This program is protected by copyright law and international treaties.	
		_
	< Back Next > Cancel	

- 3. Install the Wireshark Sniffer Interface Tool in the default location, C:\Program Files (x86)\Atmel\Atmel Wireshark Sniffer Interface Tool\Atmel Wireshark Sniffer Firmware.
- 4. Click **Next** to complete the installation.

Figure 2-12. Default Location – Wireshark Sniffer Tool Installation

🕵 Atmel W	ireshark Sniffer Interface Tool - InstallShield Wizard
Destinati	ion Folder
Click Ne	ext to install to this folder, or click Change to install to a different folder.
~	Install Atmel Wireshark Sniffer Interface Tool to:
	C:\Program Files (x86)\Atmel\Atmel Wireshark Sniffer Interface Tool\ Change
	↑
	L3
	4
nstallShield	
	< Back Next > Cancel

- 5. Follow the instructions in Release Notes.txt (available inside the package folder Atmel Wireshark Sniffer Interface Tool) to complete the setup procedure. For more details, refer to the ZigBit USB Stick User Guide (42194).
- 6. Flash the sniffer firmware on the respective Zigbit hardware platforms. For more details, refer to the 2.3. Flashing the Firmware into ZigBit USB Stick. The following are the available images in the package:
 - AWSI_at32uc3a3256s_rz600_at86rf212.hex
 - AWSI_at32uc3a3256s_rz600_at86rf231.hex
 - AWSI_atxmega256a3u_rf212b_zigbit_usb.hex
 - AWSI_atxmega256a3u_rf233_zigbit_usb.hex

2.3 Flashing the Firmware into ZigBit USB Stick

The following are the steps to flash the firmware into the ZigBit USB stick:

- 1. Connect the Atmel ICE JTAG cable from the AVR[®] connector port in Atmel ICE to JTAG programming header (J2). For more details, refer to the *ZigBit USB Stick User Guide* (42194).
- Connect the Atmel ICE to one COM port of PC using the USB cable and ZigBit USB stick to another COM port of the PC. For more details, refer to the *Atmel-ICE Programmers and Debuggers User Guide* (42330).
 Figure 2-13. Atmel ICE Zigbit Sniffer Connection

3. Open the Microchip Studio, go to *Tools>Device Programming* and select the corresponding tools, devices and interfaces.

Figure 2-14. Device Programming

🕉 Start Page - Microchip Studio	
File Edit View VAssistX ASF Project Debug	Tools Window Help
🖁 🖸 🕶 🕲 🐮 🕶 🔛 🛣 🕹 🗗 🖆 🖄	Command Prompt
■ * * < * 9 · · · ● ○ ● ● ●	👕 Device Pack Manager
	Device Programming Ctrl+Shift+P
	Programming Center
	Add target
	Data Visualizer
	Select profile
	Bluetooth Low Energy Performance Analyzer
	FIEEE 802.15.4 Performance Analyzer
	Create Project From Makefile
	Code Snippets Manager Ctrl+K, Ctrl+B
	Extensions and Updates
	External Tools
	Import and Export Settings
	Customize
	Options

- 4. The user must select the following fields:
 - From the "Tool" drop-down list, select Atmel-ICE.
 - From the "Device" drop-down list, select ATxmega256A3U.
 - From the "Interface" drop-down list, select JTAG.

Figure 2-15. Device Programming Fields

Atmel-ICE (J41800041451) - Device Programming

- 5. The firmware images are available in the directory: *Atmel Wireshark Sniffer Interface Tool\Atmel Wireshark Sniffer Firmware*. Load Wireshark sniffer firmware from the default location (step 3), and flash the firmware into the ZigBit sniffer.
- 6. Disconnect the Atmel ICE from the ZigBit USB stick.
- 7. Connect the ZigBit USB stick to the PC via USB, and open the Atmel Wireshark Sniffer Interface Tool.

Figure 2-16. Connect ZigBee USB Stick to PC

3. Sniffer Capture Session Setup

This chapter provides details about how to set up a sniffer capture session after successful installation of the Wireshark Sniffer Interface Tool in the PC.

3.1 Wireshark Packet Capture Procedure

- 1. From the start menu, click *Atmel Wireshark Sniffer Interface Tool* to launch the Wireshark Sniffer Interface Tool.
- 2. From the "Sniffer Port" drop-down list, for example, select COM30.
- 3. From the "Baudrate" drop-down list, select 115200.
- 4. Click Connect to continue. Figure 3-1. Start-Up Window Atmel Wireshark Sniffer Interface Tool

5. From the "Channel" drop-down list, for example, select *11*.

Notes: The user can select the "Channel" as per the requirement. The following are the values:

- For Sub-GHz, the range is 0-10.
- For 2.4 GHz, the range is 11-26.
- 6. From the "Channel Page" drop-down list, for example, select 0. The range is 0-10. **Note:** The user can tune the "Channel Page" according to the custom data rate requirements.
- 7. Click **Play** to start capture.

Figure 3-2. Channel/Channel Page/Play Button

	🚈 Atmel Wireshark Sniffer	Interface — 🗆 >	×
	Sniffer Port	COM93 v	
	Baudrate	115200	
5—	Channel	11 ~	
6—	Channel Page	0 ~	
7—			
	Elapsed Time	Timer Stopped	
	Board Name:	XMEGA_RF233_ZIGBIT	
	Radio Name:	AT86RF233	
	Sniffer Firmware ver:	02.00 Sniffer Firmware	
	Sniffer interface help:	Channel's and Channel Page(Data Rate) will be shown as per the Connected Radio capability, Select the channel and channel page(Data Rate).	
		Channel page:0 Data rate:250kbps	
		Packets Captured 0	

Notes:

- The AT86RF233 ZIGBIT USB stick (2.4 GHz) supports the following data rates:
 - Channel page 0 Data rate is 250 kbps
 - Channel page 2 Data rate is 500 kbps
 - Channel page16 Data rate is 1 Mbps
 - Channel page 17 Data rate is 2 Mbps
- The AT86RF212B ZIGBIT USB stick (Sub-GHz) supports the following data rates:
 - Channel page 0 Data rate is 20 kbps (Channel 0), 40 kbps (Channel 1-10)
 - Channel page 2 Data rate is 100 kbps (Channel 0), 250 kbps (Channel 1-10)
 - Channel page 5 Data rate is 250 kbps
 - Channel page 16 Data rate is 200 kbps (Channel 0), 500 kbps (Channel 1-10)
 - Channel page 17 Data rate is 400 kbps (Channel 0),1 Mbps (Channel 1-10)
 - Channel page 18 Data rate is 500 kbps
 - Channel page 19 Data rate is 1 Mbps

The following pop-up window appears showing the packets captured in the Wireshark.

Figure 3-3. Wireshark Start-up Window

File	Edit View O	Go Capture	Analyze Statistics Teleph	ony Wireless To	ols Help					
		🗎 🗙 🙆 I 🤇	९ 🗢 🗢 🕾 💽 📃	📃 @, @, @, 9	I					
A	pply a display filter	<ctrl-></ctrl->								+ 🔽
Inte	rface ~	Device All adve	ertising devices 🕤 Key Legacy	Passkey Value	Adv Hop			Help	Defaults	Log
No.	Source		Destination	Time	Protocol	Lengti	Info			
	1		Broadcast	0.000000	IEEE 802.15.4	10	Beacon Request			
	2 0x0000		Broadcast	11.767595	ZigBee	47	Link Status			
	3 0×0000		Broadcast	12.239705	ZigBee ZDP	48	Permit Join Requ	Jest		
	4 0x0000		Broadcast	12.880855	ZigBee ZDP	48	Permit Join Requ	Jest		
	5 0x0000		Broadcast	26.891968	ZigBee	47	Link Status			
	6		Broadcast	27.499082	IEEE 802.15.4	10	Beacon Request			
	7 0×0000			27.501054	ZigBee	28	Beacon, Src: 0x0	9000, EP	ID: 00:00:00_00:	00:0d:ee:
	8 00:00:00:00:00	0:0d:ee:b3	0×0000	27.639432	IEEE 802.15.4	21	Association Requ	uest, FF	D	
	9			27.641427	IEEE 802.15.4	5	Ack			
	10 00:00:00:00:00	0:0d:ee:b3	0×0000	28.137568	IEEE 802.15.4	18	Data Request			
	11			28.138565	IEEE 802.15.4	5	Ack			
	12 00:00:00:00:00	0:0d:ee:b1	00:00:00:00:00:0d:ee:b3	28.141603	IEEE 802.15.4	27	Association Resp	oonse, P	AN: 0x2be2 Addr:	0x0401
	13			28.142556	IEEE 802.15.4	5	Ack			
	14 0x0000		0x0401	28.146545	ZigBee	73	Transport Key			
	15			28.148174	IEEE 802.15.4	5	Ack			
	16 0x0401		Broadcast	28.154162	ZigBee ZDP	57	Device Announcer	nent, Nw	k Addr: 0x0401,	Ext Addr:
	17 0x0401		Broadcast	28.191112	ZigBee ZDP	57	Device Announcer	nent, Nw	k Addr: 0x0401,	Ext Addr:
	18 0×0401		0×0000	28.220035	ZigBee ZDP	48	Node Descriptor	Request	, Nwk Addr: 0x00	00
	19			28.220598	IEEE 802.15.4	5	Ack			

a. Go to Analyze>Enabled Protocols to select the protocols.

Figure 3-4. Enabled Protocols Selection

	1		Display Filters		1					
App	lv a displav	ilter <ctrl-></ctrl->	Display Filter Macros							
Interfa	ice	 Device All a 	Display Filter Expressio	n	ue	Adv Hop		Help	Defaults	
.	Source		Apply as Column	Ctrl+Shift+I	me		Protocol		Lengti Info	
489	0xa240		Apply as Filter	•	5.201454		TEEE 802.15.	4	12 Data R	equest
496)		Proparo as Eiltor	,	5.203008		IEEE 802.15.	4	5 Ack	cquese
491	0xa240		Frepare as filter		5.701111		IEEE 802.15.	4	12 Data R	equest
491	2		Conversation Filter	•	5.702112		IEEE 802.15.	4	5 Ack	
493	8 0xa240	7.		-	6.202572		IEEE 802.15.	4	12 Data R	equest
494	÷	/a	Enabled Protocols	Ctrl+Shift+E	6.202936		IEEE 802.15.	4	5 Ack	
495	0xa240		Decode As	Ctrl+Shift+U	6.700538		IEEE 802.15.	4	12 Data R	equest
496	5		Reload Lua Plugins	Ctrl+Shift+I	5.701540		IEEE 802.15.	4	5 Ack	
497	7 0xa240		Reload Edd Hagins	Carronnere	7.198491		IEEE 802.15.	4	12 Data R	equest
498	3		SCTP	•	7.199886		IEEE 802.15.	4	5 Ack	
499	9 0xa240		Collow.		7.697732		IEEE 802.15.	4	12 Data R	equest
506	0.000000		Follow	,	7.698350 P.105241		IEEE 802.15.	4	5 ACK	aguast
50.	0.0240		Chavy Desket Bytes	Chilly Chiffy O	8 105791		TEEE 902.15.	4	IZ Data K	equest
503	8 0xa240		Show Packet Bytes	Ctri+Shirt+O	8,693812		TEEE 802.15.	4	12 Data R	equest
504	1		Expert Information		8,694812		IEEE 802.15.	4	5 Ack	
505	0xa240		0×0000		119.193023		IEEE 802.15.	4	12 Data R	equest
506	5				119.193977		IEEE 802.15.	4	5 Ack	

- b. The user can select the protocols as per the requirement. For example, in this scenario, search for *zbee* to select **ZigBee** protocols.
- c. Click **OK** to continue.

Figure 3-5. Protocol Selection

🛃 Wireshark					
File Edit	View Go Capture Analyze Statistic	s Telephony Wireless Tools Help			
Apply a dis	Wrieshark: Enabled Protocols	Description	Everywhere \vee in any	/ protocol ~	s Log
665 0xa24 666 0xa24 688 669 0xa24 610 0xa24 611 0xa24 613 0xa24 614 0xa24 615 0xa24 615 0xa24 616 617 0xa24 618 619 0xa24 620 621 0xa24 621	 ✓ GBCS Tunnel ✓ gbcs_zbee_zcl_se.tun ✓ jlp24 ✓ jlp2be_zcl_se.tun ✓ ZigBee ✓ ZigBee Beacon ✓ ZigBee Beacon ✓ ZigBee Green Power ✓ Zibee_nwk.gp_wlan 	GBCS Tunnel GBCS over ZigBee SE Tunneling Internet Protocol Version 4 IP over ZigBee SE Tunneling ZigBee Network Layer ZigBee Hetwork Layer over IEEE 802.15.4 ZigBee Beacon ZigBee Beacon ZigBee Green Power Profile ZigBee Green Power over IEEE 802.15.4	← _7b		a Request a Request a Request a Request a Request a Request a Request a Request
<pre>> Frame 200: > IEEE 802.1 > ZigBee Net</pre>	Disabiling a protocol prevents higher layer protocols . Enable All Disable All Inver	from being displayed t	7C	cel Help	

- 8. Click **Pause** to pause capturing of packets.
- 9. Click **Stop** to stop capturing of packets.

Figure 3-6. Pause/Stop Buttons

	🗠 Atmel Wireshark Sniffer	interface —	×	
	Sniffer Port	СОМ93 🗸	about	
	Baudrate	115200 V Disconnect		
	Channel	11 *		
	Channel Page	0 ~		
9—			8	8
	Elapsed Time	Timer Stopped		
	Board Name:	XMEGA_RF233_ZIGBIT		
	Radio Name:	AT86RF233		
	Sniffer Firmware ver:	02.00 Sniffer Firmware		
	Sniffer interface help:	Channel's and Channel Page(Data Rate) will be shown as per the Connected Radio capability, Select the channel and channel page(Data Rate).	^	
		Channel page:0 Data rate:250kbps	~	
		Packets Captured 0		

a. The following pop-up dialogue box appears, and the user must click **Yes** or **No** to save/delete the capture file (if there is any capture in the previous channel/instance).

Figure 3-7. Save the Wireshark Sniffer Data

Atmel Wireshark Sniffer I	nterface — 🗆 🗙
Sniffer Port	COM55 · about
Baudrate	115200 V Disconnect
Channel	11
Channel Page	0 ~
	Save the Wireshark sniffer data $ imes$
	Do you want to save the captured data?
Elapsed Time	0(
Board Name:	xi 9a Yes No
Radio Name:	AT00KF233
Sniffer Firmware ver:	02.00 Sniffer Firmware
Sniffer interface help:	Sniffer captures the packet and send to the wireshark. Press Pause to Pause the capture, but connection will be kept alive, during the pause the packets will be dropped and will not be captured. Resume capture will be done by press start after pause, the packet capture resume with existing interface, during the pause and resume no changes are allowed on that
	Packets Captured 2240

- The user can save the captured file for future reference or can continue without saving. Note: The user must ensure adding the path of Wireshark-winXX-3.X.X.exe in the system environment variables.
- 11. The following figure illustrates the ZigBit 2.4 GHz USB stick in the Device Manger of the PC.

Figure 3-8. ZigBit 2.4 GHz USB Stick Com Port (Sniffer) Listing in Windows Device Manager

📩 Device Manager
File Action View Help
🗸 🚅 Network adapters
🚽 Bluetooth Device (Personal Area Network)
Cisco AnyConnect Secure Mobility Client Virtual Miniport Ac
Intel(R) Dual Band Wireless-AC 8265
Intel(R) Ethernet Connection (4) I219-V
WAN Miniport (IKEv2)
WAN Miniport (IP)
WAN Miniport (IPv6)
WAN Miniport (L2TP)
🚽 WAN Miniport (Network Monitor)
WAN Miniport (PPPOE)
WAN Miniport (PPTP)
wan Miniport (SSTP)
V Ports (COM & LPT)
Standard Serial over Bluetooth link (COM22)
Standard Serial over Bluetooth link (COM23)
ZigBit 2.4GHz USBstick Com Port (COM93)
> 🚍 Print queues
> Processors
> If Security devices

4. Configuring Sniffer Preferences

The Wireshark's GUI provides multiple filtering options for easy viewing and analysis. The user can obtain a complete outlook of the wireless network with the appropriate settings. This chapter provides information on configuring such preferences in the Wireshark's GUI.

4.1 Wireshark Capture Interface

 Protocols – Wireshark automatically identifies the protocol in use. All supported protocols are enabled by default, go to *Analyze>Enabled Protocols* to see all the menu options. The user can use this option to enable or disable protocols as per the requirement.

Note: The user must ensure all the required protocols are enabled before capturing the packets.

- Security It is possible to monitor encrypted ZigBee network data by entering the Network (NWK) security key used in the network. Go to *Edit>Preferences>Protocols>ZigBee*. The following figure illustrates the security key configuration options in Wireshark.
 - From the "Pre-configured Keys", click Edit to enter the security keys (see Figure 4-2).

Figure 4-1. Security Preferences in Wireshark

Wireshark · Preferences		×
X11	2igBee Network Layer	
X2AP XDMCP	Security Level AES-128 Encryption, 32-bit Integrity Protection	
ХМСР	Pre-configured Keys Edit	
XML		
XMPP		
XnAP		
XOT		
XYPLEX		
YAMI		
YMSG		
Z39.50		
ZEBRA		
ZigBee		
ZigBee APS		
ZigBee Gree	1	
ZIOP		
ZRTP		
ZVT		
RSA Keys		
> Statistics		
Advanced		
	OK Cancel	Help

The security level can be set as per the *Zigbee Specification Revision 22 1.0*. The following table provides details about the security levels.

Table 4-1. Security Levels Available to the NWK, and Application Support Sub-Layer (APS)

Security Level Identifier	Security Level Subfield	Security Attributes	Data Encryption	Frame Integrity (Length M of MIC,in Number of Octets)
0x00	000	None	OFF	NO (M = 0)
0x01	001	MIC-32	OFF	YES (M = 4)
0x02	010	MIC-64	OFF	YES = (M = 8)

continued								
Security Level Identifier	Security Level Subfield	Security Attributes	Data Encryption	Frame Integrity (Length M of MIC,in Number of Octets)				
0x03	011	MIC-128	OFF	YES (M = 16)				
0x04	100	ENC	ON	NO (M = 0)				
0x05	101	ENC-MIC-32	ON	YES (M = 4)				
0x06	110	ENC-MIC-64	ON	YES = (M = 8)				
0x07	111	ENC-MIC-128	ON	YES (M = 16)				

Note: For more details on the security levels, refer to the *Table 4-30 Security Levels Available to the NWK, and APS Layers* in the *Zigbee Specification Revision 22 1.0* (05-3474-22).

It is possible to add multiple keys and edit or remove existing keys. The following figure illustrates the security key entries.

For example, for a Zigbee network that uses centralized security in the APS layer, a device joining the network establishes a link key with the trust center. To view all APS transactions happening in this link, such as the APS Transport Key command, add the Trust Center Link Key and network key under the preferences tab in Wireshark (see the following figure).

Figure 4-2. Security Key Entries

Pre-configured Keys			>
Key 5a:69:67:42:65:65:41:6c:6c:69:61:6e:63:65:30:39 cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:	Byte Order Normal Normal	Label	
+ - B ^ V E	Copy fro	om Cancel	Help

The user can customize the following viewing options in the Wireshark:

- For arranging the layout of the panels, go to *Edit>Preferences>Layout*.
- For adding columns to the packet display pane (for example, HW Src Addr), go to Edit>Preferences>Columns.
- To colorize frame formats (for example, NWK Link Status Frames), go to View>Coloring Rules. For more details, refer to the Packet colorization (11.3).
- Perform the following steps to apply filters to display frames based on chosen fields in a frame:
 - a. Right-click the field

b. Select Apply as Filter

Figure 4-3. Wireshark Capture Screen Layout

No.	HW Src Addr	HW Dest Addr	NWK Src Addr	Protocol	Info	Frame 11: 56 bytes on wire (448 bits), 54 bytes canti
	1	Broadcast		IEEE 802.15.4	Beacon Request	■ TEEE 802.15.4 Data, Dst: 0x9ff7, Src: 0x0000
	2 0×0000	Broadcast	0×0000	ZiqBee	Link Status	■ FigBee Network Laver Data, Dst: 0x9ff7, Src: 0x0000
	3	Broadcast		IEEE 802.15.4	Beacon Request	B ZigBee Application Support Laver Command
	4 0x0000			ZiqBee	Beacon, Src: 0x0000, EPID: aa:aa:aa	■ Frame Control Field: Command (0x01)
	5 00:00:00:01:00:00:00:00	0x0000		IEEE 802.15.4	Association Request	Counter: 210
	6			IEEE 802.15.4	Ack	R Command Frame: Transport Key
	7 00:00:00:01:00:00:00:00	0x0000		IEEE 802.15.4	Data Request	Command Identifier: Transport Key (0x05)
	8			IEEE 802.15.4	Ack	Key Type: Standard Network Key (0x01)
	9 aa:aa:aa:aa:aa:aa:aa:aa	00:00:00:01:00:00:	:0	IEEE 802.15.4	Association Response, PAN: 0xlaaa A	Key: aaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb
	10			IEEE 802.15.4	Ack	Sequence Number: 0
	11 0×0000	0x9ff7	0x0000	ZiqBee	Transport Key	Extended Destination: 00:00:00 01:00:00:00:00 (0)
	12			IEEE 802.15.4	Ack	Extended Source: aataataaaataataaataa (aataataa
	13 0x9ff7	Broadcast	0x9ff7	ZigBee ZDP	Device Announcement, Device: 00:00:	
	14 0×0000	Broadcast	0x9ff7	ZigBee ZDP	Device Announcement, Device: 00:00:	
	15 0x0000	Broadcast	0x0000	ZigBee	Link Status	
	16 0x9ff7	Broadcast	0x9ff7	ZigBee	Link Status	0000 61 88 5d aa 1a f7 9f 00 00 08 00 f7 9f 00 00 01
	17 0×0000	Broadcast	0x0000	ZigBee	Link Status	0010 46 01 d2 05 01 aa aa aa aa aa aa aa aa bb bb bb
	18 0x9ff7	Broadcast	0x9ff7	ZigBee	Link Status	0020 bb bb bb bb bb 00 00 00 00 00 01 00 00 00 aa aa
	19 0×0000	Broadcast	0x0000	ZigBee	Link Status	0030 aa aa aa aa aa aa

5. Analyzing Data Traffic in Zigbee Pro Networks

This chapter provides examples of common interaction in Zigbee Pro networks, helping the user to look closely into various fields of the frame.

Note: It does not cover all scenarios that fall under Zigbee specification.

5.1 Zigbee Frame Format Overview

The following figure illustrates the skeletal overview of the Zigbee frame format (APS and NWK layer security headers and footers). Zigbee uses a non-beacon enabled MAC format with no security in the MAC layer.

Figure 5-1. Zigbee Frame Format

PHY	SHR	Header	Payload	
		MAC	Header Payload	Footer
			NWK Header AUX	11C
			APS Header AUX Payload MIC	
			ZDO/ZCL/APP Header Payload	

5.2 MAC Association

Every node in a Zigbee network has its own unique 64-bit IEEE MAC address. When a node joins the network for the first time, the end device/router initiates the MAC association procedure, after which, it obtains a 16-bit network (short) address from the parent. For further communication in the network, this short address is used to reduce frame overhead. Use a configuration parameter, IEEE MAC address to set the value of the 64-bit MAC address of the node during compilation. The following conditions prevail:

- Setting IEEE MAC address for testing Any random 64-bit value can be set at compile time in application configuration files or at run-time before calling the Application Programming Interface (API) to start the network request via ZDP.
- Setting IEEE MAC address during production Commercial use of the Zigbee products requires the purchase of a block of IEEE/MAC addresses from IEEE. In this case, IEEE MAC address can be set to zero during compile-time.

When a node starts up, it does network discovery by performing an active scan over the channels specified in the list of channels configured at the Zigbee stack parameter configuration files or at application level. The node sends the Beacon Request (see packet #1) (see the following figure). After receiving a Beacon Request frame, the routers and coordinators already present in the network automatically respond with a beacon frame. The joining node filters a potential parent based on the settings in the beacon packet received.

Figure 5-2	2. Node Joins	Network via MAC	Association us	sina IEEE Addres	s 0xdeeb1ULL

No.	Source	Destination	Time	Protocol	Leng	Info
1		Broadcast	0.000000	IEEE 802.15.4	10	Beacon Request
2	0x0000	Broadcast	11.767595	ZigBee	47	Link Status
3	0x0000	Broadcast	12.239705	ZigBee ZDP	48	Permit Join Request
4	0x0000	Broadcast	12.880855	ZigBee ZDP	48	Permit Join Request
5	0×0000	Broadcast	26.891968	ZigBee	47	Link Status
6	•	Broadcast	27.499082	IEEE 802.15.4	10	Beacon Request
7	0×0000		27.501054	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
8	00:00:00:00:00:0d:ee:b3	0×0000	27.639432	IEEE 802.15.4	21	Association Request, FFD
9			27.641427	IEEE 802.15.4	5	Ack
10	00:00:00:00:00:0d:ee:b3	0×0000	28.137568	IEEE 802.15.4	18	Data Request
11			28.138565	IEEE 802.15.4	5	Ack
12	00:00:00:00:00:0d:ee:b1	00:00:00:00:00:0d:ee:b3	28.141603	IEEE 802.15.4	27	Association Response, PAN: 0x2be2 Addr: 0x0401
13			28.142556	IEEE 802.15.4	5	Ack

The beacon from the coordinator/router contains the Association Permit sub field. It is set to True if the device accepts the association to the Personal Area Network (PAN). A joining node cannot associate to the device if this sub-field is set to False. The PERMIT DURATION parameter in the Zigbee application controls the joining of devices into the network by setting a finite permit duration.

Figure 5-3. assocPermit Sub-Field in the Beacon Frame

For example, the following figure illustrates the parsed beacon payload that contains information based on which joining node chooses a potential parent.

The beacon payload provides information on the Zigbee stack profile used in the network (Stack Profile: ZigBee PRO = 0x2), network protocol version (nwkcProtocolVersion, 0x02). The Router Capacity, End Device Capacity and Device Depth limits the acceptance of children by a parent node. For more details, refer to the Zigbee Specification Revision 22 1.0 (05-3474-22).

Figure 5-4. Beacon Payload

```
    ZigBee Beacon, ZigBee PRO, EPID: 00:00:00:00:00:00:0b:ee
    Protocol ID: 0
    Beacon: Stack Profile: ZigBee PRO, Router Capacity, End Device Capacity
    .... 0010 = Stack Profile: ZigBee PRO (0x2)
    .... 0010 .... = Protocol Version: 2
    .... 11. .... = Router Capacity: True
    .000 0... .... = Device Depth: 0
    1... .... = End Device Capacity: True
    Extended PAN ID: 00:00:00_00:00:00:0b:ee (00:00:00:00:00:00:0b:ee)
    Tx Offset: 16777215
    Update ID: 0
```

The following figure illustrates a joining device indicating its capability information in the MAC Association Request it sends to its potential parent.

Figure 5-5. Capability Information in a MAC Association Request

```
Command Identifier: Association Request (0x01)
 Association Request
   .... 0 = Alternate PAN Coordinator: False
   .... 1. = Device Type: FFD
   .... 1.. = Power Source: AC/Mains Power
   .... 1... = Receive On When Idle: True
   .0.. .... = Security Capability: False
   1... .... = Allocate Address: True
```

5.3 Self-Leave and Parent-Induced Leave

The Zigbee Device Object (ZDO) layer manages the ZDP requests and uses them for various network control scenarios.

Use the ZDP requests to process the network leave when a device needs to leave the network on certain events. Network leave can be self-induced on a node or a node can order another remote node to leave the network.

The following figure illustrates a node with a short address: 0x457a. It leaves the network on its own (self-induced) and rejoins the network (see packet #3300) by sending a rejoin request.

Figure 5-6. Self-Leave of Node (End Device) with Short Address 0x457a and Extended Address 0xdeeb1ULL

3292 0x457a	Broadcast	868.566706	ZigBee	47 Leave
3293		868.567703	IEEE 802.15.4	5 Ack
3294	Broadcast	868.712432	IEEE 802.15.4	10 Beacon Request
3295 0×0000		868.715116	ZigBee	28 Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
3296	Broadcast	869.131080	IEEE 802.15.4	10 Beacon Request
3297 0×0000		869.135077	ZigBee	28 Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
3298	Broadcast	870.272629	IEEE 802.15.4	10 Beacon Request
3299 0×0000		870.275375	ZigBee	28 Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
3300 0x457a	0000×0	870.694727	ZigBee	47 Rejoin Request, Device: 0x457a
3301		870.696141	IEEE 802.15.4	5 Ack
3302 0x457a	0000×0	871.271862	IEEE 802.15.4	12 Data Request
3303		871.272858	IEEE 802.15.4	5 Ack
3304 0×0000	0x457a	871.276892	ZigBee	57 Rejoin Response, New Address: 0x457a
3305		871.278842	IEEE 802.15.4	5 Ack

The node rejoins because the Rejoin bit is set to True in the Command Frame: Leave. The following figure illustrates the leave packet rejoin bit setting.

Figure 5-7. Leave Packet Rejoin Bit Setting

The following figure illustrates a parent node requesting the child device with a short address, 0×6915 , to leave (Leave Request) (see packet #99). The child device sends a rejoin response (see packet #101). After a few seconds, the child device rejoins the network with the same short address. In this case, the child device rejoins a network with known network parameters, such as network PANID.

No.	Source	Destination	Time	Protocol	Leng Info
9	9 0x0000	0x6915	344.198134	ZigBee ZDP	55 Leave Request, Device: 00:00:00_00:00:0d:ee:b3
10	9		344.199875	IEEE 802.15.4	5 Ack
10	1 0x6915	0×0000	344.200877	ZigBee ZDP	47 Leave Response, Status: Success
10	2		344.201874	IEEE 802.15.4	5 Ack
10	3 0×0000	0x6915	344.205547	ZigBee	45 APS: Ack, Dst Endpt: 0, Src Endpt: 0
10	4		344.207157	IEEE 802.15.4	5 Ack
10	5 0x6915	Broadcast	344.241797	ZigBee	47 Leave
10	5 0x6915	Broadcast	344.320390	ZigBee	47 Leave
10	7	Broadcast	344.324058	IEEE 802.15.4	10 Beacon Request
10	B 0×0000		344.327381	ZigBee	28 Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b7
10	9 0x6915	0×0000	344.464216	ZigBee	47 Rejoin Request, Device: 0x6915
11	9		344.465868	IEEE 802.15.4	5 Ack
11:	1 0×0000	0x6915	344.469117	ZigBee	57 Rejoin Response, New Address: 0x6915
11:	2		344.469526	IEEE 802.15.4	5 Ack
11	3 0x6915	Broadcast	344.475399	ZigBee ZDP	57 Device Announcement, Nwk Addr: 0x6915, Ext Addr: 00:00:00_0
114	4 0x6915	Broadcast	344.550166	ZigBee ZDP	57 Device Announcement, Nwk Addr: 0x6915, Ext Addr: 00:00:00_0
11	5 0x6915	Broadcast	355.722891	ZigBee	50 Link Status
11	5 0×0000	Broadcast	356.902136	ZigBee	50 Link Status
11	7 0x6915	Broadcast	370.883667	ZigBee	50 Link Status

Figure 5-8. Parent Node 0x0000 Sends a ZDP Request Requesting Child 0x6915 to Leave

The following figure illustrates the parent request to the child device to leave the network with no rejoin.

Figure 5-9. Parent Induced Leave with No Rejoin

No.	Source	Destination	Time	Protocol	Leng	Info
143	0×0000	0x6915	509.080714	ZigBee ZDP	55	Leave Request, Device: 00:00:00_00:00:0d:ee:b3
144			509.082196	IEEE 802.15.4	5	Ack
145	0x6915	0×0000	509.082196	ZigBee ZDP	47	Leave Response, Status: Success
146			509.083197	IEEE 802.15.4	5	Ack
147	0x0000	0x6915	509.086683	ZigBee	45	APS: Ack, Dst Endpt: 0, Src Endpt: 0
148			509.087212	IEEE 802.15.4	5	Ack
149	0x6915	Broadcast	509.163823	ZigBee	47	Leave
150	0x6915	Broadcast	509.245952	ZigBee	47	Leave
151	0x0000	Broadcast	523.198620	ZigBee	47	Link Status
152	0×0000	Broadcast	538.359397	ZigBee	47	Link Status
153	0×0000	Broadcast	553.399912	ZigBee	47	Link Status
154	0×0000	Broadcast	568.443126	ZigBee	47	Link Status
155	0×0000	Broadcast	583.525611	ZigBee	47	Link Status
156	0×0000	Broadcast	598.565007	ZigBee	47	Link Status
157		Broadcast	608.471662	IEEE 802.15.4	10	Beacon Request
158	0×0000		608.472570	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b7
159	00:00:00:00:00:0d:ee:b3	0x0000	609.032644	IEEE 802.15.4	21	Association Request, FFD
160			609.033977	IEEE 802.15.4	5	Ack
161	00:00:00:00:00:0d:ee:b3	0x0000	609.529476	IEEE 802.15.4	18	Data Request
162			609.530474	IEEE 802.15.4	5	Ack
163	00:00:00:00:00:0d:ee:b7	00:00:00:00:00:0d:ee:b3	609.533465	IEEE 802.15.4	27	Association Response, PAN: 0x0daf Addr: 0x0a18

The difference between Figure 5-8 and the Figure 5-9 is the rejoin bit setting.

- If the Rejoin bit is set to True, the leaving device rejoins using rejoin request.
- If the Rejoin bit is set to False, the rejoining can happen using MAC association, in the case of invoking the child device to join the network.

It is possible to configure options, such as rejoin and removal of children in the leave request.

5.4 Network (NWK) Link Status Frame

The routers and coordinator send the Network (NWK) link status frames, so that neighboring nodes can maintain information on the link costs required for routing. The Link Status frames are periodically transmitted as one-hop broadcasts. The Link Status list contains the short address and link cost information of all neighboring nodes. The following figure illustrates the header information in a NWK link status frame.

Figure 5-10. NWK Link Status Command Frame

- > Frame 144: 50 bytes on wire (400 bits), 48 bytes captured (384 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- IEEE 802.15.4 Data, Dst: Broadcast, Src: 0x0000
- ZigBee Network Layer Command, Dst: Broadcast, Src: 0x0000

```
> Frame Control Field: 0x1209, Frame Type: Command, Discover Route: Suppress, Security, Extended Source Command
  Destination: 0xfffc
   <[Address: 0xfffc]>
  Source: 0x0000
  <[Address: 0x0000]>
  Radius: 1
  Sequence Number: 245
  Extended Source: 00:00:00 00:00:0d:ee:b1 (00:00:00:00:00:0d:ee:b1)
  <[Extended Address: 00:00:00_00:00:0d:ee:b1 (00:00:00:00:0d:ee:b1)]>
> ZigBee Security Header
✓ Command Frame: Link Status
      Command Identifier: Link Status (0x08)
      .1.. .... = Last Frame: True
      ..1. .... = First Frame: True
       ...0 0001 = Link Status Count: 1

    Link 1

          Address: 0x0401
          .... .011 = Incoming Cost: 3
          .100 .... = Outgoing Cost: 4
```

5.5 Multicast

Broadcasting a message to a group of nodes involves creating a group table entry for a specified end-point and group ID. The following figure illustrates a multicast transmission from coordinator to group with group ID, Group: 0×1111 and endpoint 0×20 . The network destination address is the group address.

Figure 5-11. Multicast Sub-field – NWK Header

```
    ZigBee Application Support Layer Data, Group: 0x1111, Src Endpt: 20

    Frame Control Field: Data (0x0c)

          .... 11.. = Delivery Mode: Group (0x3)
          ..0. .... = Security: False
          .0.. .... = Acknowledgement Request: False
          0... = Extended Header: False
      Group: 0x1111
      Cluster: On/Off (0x0006)
      Profile: Home Automation (0x0104)
      Source Endpoint: 20
      Counter: 26
✓ ZigBee Cluster Library Frame
      Frame Control Field: Cluster-specific (0x11)
   \sim
          .... ..01 = Frame Type: Cluster-specific (0x1)
          .... .0.. = Manufacturer Specific: False
          .... 0... = Direction: Client to Server
          ...1 .... = Disable Default Response: True
      Sequence Number: 13
      Command: On (0x01)
```

5.6 Fragmentation

When the length of Application Layer (APL) data packets is greater than the maximum limit of the APL payload, the stack fragments the entire data into blocks.

Figure 5-12. Fragmentation – Relevant Header Information

```
> Frame 27: 57 bytes on wire (456 bits), 57 bytes captured (456 bits)
> IEEE 802.15.4 Data, Dst: 0xbc8f, Src: 0x0000
> ZigBee Network Layer Data, Dst: 0xbc8f, Src: 0x0000
✓ ZigBee Application Support Layer Data, Dst Endpt: 240, Src Endpt: 1

    Frame Control Field: Data (0xc0)

          .... ..00 = Frame Type: Data (0x0)
          .... 00.. = Delivery Mode: Unicast (0x0)
          ..0. .... = Security: False
          .1.. .... = Acknowledgement Request: True
          1... = Extended Header: True
      Destination Endpoint: 240
      Cluster: Transmit Counted Packets (0x0001)
      Profile: Test Profile #2 (0x7f01)
      Source Endpoint: 1
      Counter: 160

    Extended Frame Control Field (0x02)

          .... ..10 = Fragmentation: Middle Block (0x2)
          Block Number: 1
      Reassembled in: 43

    Data (30 bytes)

      Data: 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 ...
      [Length: 30]
```

The following figure illustrates the fragmentation example.

Figure 5-13. Fragmentation – Example

No.	Source	Destination	Time	Protocol	.ength	Info
20	0xbc8f	Broadcast	21.493704	ZigBee ZDP	37	Device Announcement, Nwk Addr: 0xbc8f, Ext Addr: 00:00:00_02:00:00:00:00
21	0xbc8f	Broadcast	22.133464	ZigBee ZDP	37	Device Announcement, Nwk Addr: 0xbc8f, Ext Addr: 00:00:00_02:00:00:00:00
22	0×0000	Broadcast	25.155616	ZigBee	33	Link Status
23	Øxcbff	Broadcast	29.473672	ZigBee	33	Link Status
24	0xbc8f	Broadcast	30.607360	ZigBee	33	Link Status
25	0×0000	0xbc8f	36.144840	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 0)
26			36.147112	IEEE 802.15.4	3	Ack
27	0×0000	0xbc8f	36.243768	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 1)
28			36.246048	IEEE 802.15.4	3	Ack
29	0×0000	0xbc8f	36.343496	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 2)
30			36.345768	IEEE 802.15.4	3	Ack
31	0xbc8f	0x0000	36.350384	ZigBee	28	APS: Ack, Dst Endpt: 1, Src Endpt: 240
32			36.351728	IEEE 802.15.4	3	Ack
33	0×0000	0xbc8f	36.355896	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 3)
34			36.358168	IEEE 802.15.4	103	Data
35	0x0000	0xbc8f	36.452296	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 4)
36			36.454568	IEEE 802.15.4	3	Ack
37	0x0000	0xbc8f	36.552688	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 5)
38			36.554960	IEEE 802.15.4	3	Ack
39	0xbc8f	0×0000	36.558864	ZigBee	28	APS: Ack, Dst Endpt: 1, Src Endpt: 240
40			36.560208	IEEE 802.15.4	3	Ack
41	0x0000	0xbc8f	36.564128	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1 (fragment 6)
42			36.566400	IEEE 802.15.4	3	Ack
43	0×0000	0xbc8f	36.662472	ZigBee T2	57	Transmit Counted Packets, Src Endpt: 1
44			36.664744	IEEE 802.15.4	3	Ack
45	0xbc8f	0x0000	36.670120	ZigBee	28	APS: Ack, Dst Endpt: 1, Src Endpt: 240
46			36.671464	IEEE 802.15.4	3	Ack

The sender node sends the first fragment with the block number as the total number of blocks comprising the entire APL data. The subsequent fragments have block numbers starting from one going up to the maximum transmission window size. The receiving node sends an APS acknowledgment frame after receiving all blocks in the transmission window. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

5.7 Service Discovery

Service discovery is the process of collecting information on supported clusters on other devices in the network. Service discovery uses ZDP requests for every cluster ID supported. Service discovery requests can be unicast or broadcast, and so the response contains the network address of the responder along with the matched simple descriptor information. The response contains a match list with the end-points that support the cluster in the request. For more details on service discovery, refer to 6. Analyzing Data Traffic in Zigbee 3.0 Protocol.

5.8 Tunneling in Secure Networks

Consider a network wherein a node insecurely joins through a router parent, and the joining node does not know the network key prior to the join procedure. In this case, using the APS command to securely communicate the network key from the trust center to the newly joined router is called the APS tunnel command.

The end-device $0 \times 0 \text{beeLL}$ joins router $0 \times 3 \times 0.08$ from packet #89. The parent router sends an APS Update Device command (packet #91) to the trust center to inform it whether a node has joined or left the network. The following table and Figure 5-15 provide details about the update status of the device, from which the trust center takes necessary action, which is to send the network or remove the key and associated security counters for the device.

Figure 5-14. Tunneling

No.		Source	Destination	Time	Protocol	Length Info
	82		Broadcast	415.660689	IEEE 802.15.4	8 Beacon Request
	83	0×0000		415.662913	ZigBee	26 Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b7
	84	0x3c08		415.670713	ZigBee	26 Beacon, Src: 0x3c08, EPID: 00:00:00_00:00:0d:ee:b7
	85	00:00:00:00:00:00:0b:ee	0x3c08	416.221401	IEEE 802.15.4	19 Association Request, FFD
	86			416.222473	IEEE 802.15.4	3 Ack
	87	00:00:00:00:00:00:0b:ee	0x3c08	416.719889	IEEE 802.15.4	16 Data Request
	88			416.720865	IEEE 802.15.4	3 Ack
	89	00:00:00:00:00:0d:ee:b3	00:00:00:00:00:00:0b:ee	416.722841	IEEE 802.15.4	25 Association Response, PAN: 0x40a8 Addr: 0x54d7
	90			416.724105	IEEE 802.15.4	3 Ack
	91	0x3c08	0×0000	416.726233	ZigBee	66 Update Device
	92			416.728801	IEEE 802.15.4	3 Ack
•	93	0×0000	0x3c08	416.732801	ZigBee	100 Transport Key
	94			416.736465	IEEE 802.15.4	3 Ack
	95	0x3c08	0x54d7	416.737593	ZigBee	71 Transport Key
	96			416.740329	IEEE 802.15.4	3 Ack
•	97	0x54d7	Broadcast	416.745681	ZigBee ZDP	55 Device Announcement, Nwk Addr: 0x54d7, Ext Addr: 00:00:00 00:00
- 1	98	0x54d7	Broadcast	416.781937	ZigBee ZDP	55 Device Announcement, Nwk Addr: 0x54d7, Ext Addr: 00:00:00_00:00

The trust center sends the APS tunnel command frame in packet #93. The tunnel command frame contains the secured frame to be sent to the destination in its payload. Packet #95 shows the APS Transport Key command frame sent from the router parent to the newly joined end-device. It includes the key sequence number and the active network key. In case the router joins with a pre-configured network key, the APS transport packet contains a key sequence number and the key values as all-zeros. The end-device receives the Transport Key command frame, sets and activates the network key and does a device announcement to the network (packets #97 and #98).

StatusInteger0x00-0x07Indicates the updated status of the device given by the DeviceAddress parameter. 0x00 = Standard device secured rejoin0x01 = Standard device unsecured join0x02 = Device left0x03 = Standard device unsecured rejoin0x04 = High security device secured rejoin0x05 = High security device unsecured join0x06 = Reserved0x07 = High security device unsecured rejoin	Parameter Name	Туре	Valid Range	Description
	Status	Integer	0x00-0x07	 Indicates the updated status of the device given by the DeviceAddress parameter. 0x00 = Standard device secured rejoin 0x01 = Standard device unsecured join 0x02 = Device left 0x03 = Standard device unsecured rejoin 0x04 = High security device secured rejoin 0x05 = High security device unsecured join 0x06 = Reserved 0x07 = High security device unsecured rejoin

Table 5-1.	Status	Field in	APS	Update	Device	Command

Note: For more details on the status field in APS update device command, refer to the *ZigBee Specification Revision 22 1.0* (05-3474-22).

Figure 5-15. Update Device Status

Command Frame: Update Device
 Command Identifier: Update Device (0x06)
 Device Address: 00:00:00_00:00:00:0b:ee (00:00:00:00:00:00:0b:ee)
 Device Address: 0x54d7
 Device Status: Standard security, unsecured join (0x01)

6. Analyzing Data Traffic in Zigbee 3.0 Protocol

The Zigbee Alliance defines a set of standard device types. These device types specify the functionality of a device. This functionality is again dependent on independent functional entities called clusters. The cluster is a container of attributes, and can read/write through command/responses defined by Zigbee Device Profile (ZDP). The alliance also provides a Zigbee Cluster Library (ZCL) that acts as a repository for cluster functionality.

The packet capture was performed using the Wireshark/Zigbit sniffer for data transfer between various combinations of Zigbee device types. The following are the three Zigbee device types:

- Zigbee coordinator/Zigbee combined interface Device capable of controlling and monitoring other devices. In general, it is a mains-powered device like a personal computer.
- Zigbee router/Zigbee lights A lighting device that can be switched ON/OFF. Adjust the brightness and color of the light via the color commands.
- Zigbee end device/Zigbee multisensor

The following are the two Zigbee network architectures:

- Centralized network Zigbee coordinator device can form a centralized network.
- Distributed network Zigbee router device can form a distributed network.

The packet capture focuses on the following scenarios:

- Zigbee coordinator Centralized network formation (Zigbee combined interface application). Commissioning and data exchange between Zigbee coordinator and Zigbee router (Zigbee extended color lights). For more details, refer to 6.2. Zigbee Coordinator.
- Zigbee router Extended lights application is commissioned to the existing Zigbee network formed by the Zigbee coordinator (combined interface or Zigbee router is capable of creating a new Zigbee distributed network (if there is no nearby network)). Here it is commissioned to the existing Zigbee centralized network formed by Zigbee coordinator/combined interface. For more details, refer to 6.3. Zigbee Router.
- Zigbee end device Joined to Zigbee coordinator (combined interface). After joining, the end device (multisensor/sensor device type) starts the ZCL attribute reporting of sensor data, such as temperature, occupancy, light and humidity after connecting to the network formed by the coordinator. For more details, refer to 6.4. Zigbee End Device.
- Touchlink commissioning In this application note, the commissioning process happens between Zigbee extended lights (router) and the color scene controller (end device). For more details, refer to 6.5. Touchlink Commissioning.

6.1 General Description

6.1.1 Base Device Behavior (BDB)

BDB (Base Device Behavior) layer supports the initialization, commissioning and operating procedures of a base device operating on the Zigbee PRO stack to ensure profile interoperability. For more details, refer to the *PRO Base Device Behavior Specification* (3.0.1).

Commissioning

Commissioning is the process of initializing the devices to join a network and to work together. The Zigbee BDB specification specifies the execution order of the procedures for the following commissioning mechanisms:

- 1. Touchlink A node can support the proximity-based commissioning mechanism. If touchlink commissioning is supported, the node supports touchlink as an initiator, a target or both.
 - Initiator A member of an existing network or (if not) creates a new network
 - Target Gets added to network by initiator
- 2. Network Steering All nodes support network steering.
 - Node not on a network Action of searching for and joining an open network
 - Node on a network It is the action of opening the network to allow new nodes to join
- 3. Network Formation Ability of a node to form a network with its network security model. It is dependent on the logical device type of the node.

- Zigbee coordinator Forms a centralized security network
- Zigbee router Forms a distributed security network
- 4. Finding and Binding The following are the two procedures in finding and binding:
 - Initiator endpoint Automatically searches and establishes application connections with target endpoint by using the identify cluster with matching cluster
 - Target endpoint Handles finding and binding requests from initiator endpoint

6.1.2 Network Security Models

A Zigbee network can support a centralized security model (centralized security network) or a distributed security model (distributed security network). All devices except Zigbee coordinator are able to join a network supporting either model or adapt to the security conditions of the network they are joining. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

Centralized Security Network

A centralized security network is a Zigbee network formed by a Zigbee coordinator with the functionality of a trust center. The trust center authenticates each node that joins such a network before it can operate on the network. After creating the centralized network, the Zigbee coordinator device must not attempt to join another network.

Default Global Trust Center Link Key

A link key that is supported by all devices, and is used to join a centralized security network if there is no other specific link.

In a centralized network, use the following keys to allow the devices to join.

- Global Trust Center Link Key Use this link key for joining centralized security networks. The value of the key is 0x5a 0x69 0x67 0x42 0x65 0x65 0x41 0x6c 0x6c 0x69 0x61 0x6e 0x63 0x65 0x30 0x39.
- Install code link key Is the link key derived from the install code from joining device to create unique Trust Center Link Key for joining.

Distributed Security Network

A distributed security network is a Zigbee network formed by a Zigbee router and does not have a trust center. The parent authenticates each node that joins such a network before it can operate on the network. A node designated as having a logical device type of a Zigbee router can attempt to join an existing centralized or distributed security network. However, a Zigbee router cannot form a centralized security network but can form a distributed security network. A node designated as having a logical device type of a Zigbee router cannot form a centralized security network but can form a distributed security network. A node designated as having a logical device type of a Zigbee end device can attempt to join an existing centralized or distributed security network.

APL Layer Security

- Transport Key service Supports secured means to transport a key to another device or other devices. The secured transport-key command provides a means to transport link or network key from a key source (for example, the trust center) to other devices.
- Request Key service Supports a secure means for a device to request an end-to-end application link key or Trust Center Link Key from the trust center.
- Verify Key service Supports a secure means for a device to verify that the device and the trust center agree on the current value of the device's link key.
- Confirm Key service Supports a secure means for a trust center to confirm a previous request to verify a link key.

For more details, refer to the PRO Base Device Behavior Specification (3.0.1).

Trust Center Link Key Exchange Procedure Figure 6-1. Trust Center Link Key Exchange Procedure Sequence Chart

For more details, refer to the PRO Base Device Behavior Specification (3.0.1).

6.1.3 Zigbee Device Profile (ZDP)

Device discovery

The device discovery mechanism provides the ability for a device to discover the identity of other devices on the PAN. The 64-bit IEEE address and the 16-bit network address both support device discovery.

• Device announcement – Enables the Zigbee devices on the network to notify other Zigbee devices that the device has joined or re-joined the network. It also helps in identifying the device's 64-bit IEEE address, new 16-bit NWK address and informing the remote devices of the capability of the Zigbee device. The destination addressing on this primitive is broadcast to all devices for which macRxOnWhenIdle = True. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

Service Discovery

The devices use the service discovery process to discover the capabilities of another device or to identify other devices that support similar services (clusters). After service discovery, the device becomes aware of the endpoints and addresses of devices supporting the same clusters. To accomplish this process, issue a query for each endpoint on a given device or by using a match service feature (either broadcast or unicast). The service discovery facility defines and utilizes various descriptors to outline the capabilities of a device. Service discovery is implemented within the Zigbee device object. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

Service discovery is the process by which a device in a Zigbee network identifies other devices that support similar services (clusters). After service discovery, the device becomes aware of the endpoints and addresses of devices supporting the same clusters.

Node descriptor – Contains information about the capabilities of the Zigbee node. The local device generates
the service discovery mechanism, which likes to get the node descriptor of a remote device. This packet can be
unicast either to the remote device itself or to an alternative device that contains the discovery information of the
remote device.

• Simple descriptor – Allows an inquiring device to get the cluster details for the supplied endpoint. This packet can be unicast.

6.1.4 Zigbee Cluster Library Specification (ZCL)

Attributes Reporting

Reporting a cluster's attribute signifies returning the value of a particular cluster attribute to the remote endpoint supporting this cluster using a specific ZCL attribute report command.

Attribute reporting starts after a device successfully joins a Zigbee network and completes service discovery. After service discovery, the device knows the endpoints and addresses of devices supporting the same clusters as it does. The device acting as a server cluster can send the periodic reports to clients supporting the same cluster.

For more details, refer to the ZigBee Alliance Cluster Library Specification Revision 8 (075123).

Periodic Reporting

The following are the types of periodic reporting:

- Automatic reporting The user can configure the reporting intervals of the cluster from the application at compile-time or at run-time. The Zigbee stack application sends out the periodic reports once every maximum reporting interval period.
- Reporting on attribute value change.
- Manual reporting The application can send out a report at any time using the attribute request via ZCL layer.

For more details, refer to the AT08550: ZigBee Attribute Reporting Application Note (42334).

Figure 6-2. Attribute Reporting – Typical Packet Exchange Sequence

6.2 Zigbee Coordinator

In the Zigbee centralized network, the Zigbee coordinator forms the network. Other routers and end-devices can enter after forming the network.

The following sections elaborate the association, commissioning, finding and binding, attribute reporting and security key exchange procedure of Zigbee coordinator device type (with Zigbee router).

6.2.1 Commissioning

6.2.1.1 Centralized Network Formation and Network Steering by Zigbee Coordinator/Combined Interface

The following figure illustrates the scenario of network formation by a Zigbee coordinator/combined interface device with network address 0x0000 and network steering to allow other devices to join the network.

After invoking the network formation commissioning procedure, the coordinator sends a Beacon Request packet (see packet #1) followed by the MAC association process. For more details, refer to 5.2. MAC Association.

After the coordinator forms the network, it sends the Link Status (see packet #2). For more details, refer to 5.4. Network (NWK) Link Status Frame.

The permit-joining ZDP request is to provide a joining permit to the target node by MAC association. Send the request as a unicast command to just one node or as a broadcast command. Permit the joining via MAC association for a given interval in seconds or forbidden permanently, depending on the payload's Permit Duration field. This field specifies the duration of time, starting from the moment of the request's reception, when joining by association is permitted.

Packet #3 shows the Permit Join Request, and the coordinator device sends the request as a broadcast packet. For more details, refer to 5.2. MAC Association.

Figure 6-3. Network Formation and Network Steering by ZigBee Coordinator

	Pad	cket #1						
							Packe	t #2
No	Source	•	Destination	Time	Protocol	Leng	Info	
E	1		Broadcast	0.00000	IEEE 802.15.4	10	Beacon Request 🔻	
E	2 0x0000		Broadcast	11.767595	ZigBee	47	Link Status	
E	3 0x0000		Broadcast	12.239705	ZigBee ZDP	48	Permit Join Reques	t
	4 0x0000	A	Broadcast	12.880855	ZigBee ZDP	48	Permit Join Reques	t
	5 0x0000		Broadcast	26.891968	ZigBee	47	Link Status	
		Packet #	#3					

The permit duration of the permit duration packet is Duration: 180. The router/end device must join the network via MAC association within 180s.

To open the network after 180s and allow other devices to join, the user must input the following commands to the coordinator, before commissioning is initiated in another device:

- setPermitJoin 180 Opens the network for the next 180s
- invokeCommissioning 8 0 Opens the network for the finding and binding procedure

Figure 6-4. Permit Join Packet of Coordinator

- > Frame 3: 48 bytes on wire (384 bits), 46 bytes captured (368 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: Broadcast, Src: 0x0000
- > ZigBee Network Layer Data, Dst: Broadcast, Src: 0x0000
- > ZigBee Application Support Layer Data, Dst Endpt: 0, Src Endpt: 0
- ✓ ZigBee Device Profile, Permit Join Request

Sequence Number: 0 Duration: 180 Significance: 1

MAC Association – If any router/end device tries to join the network through Beacon Request, the coordinator sends the Beacon frame (see packet #7). Then, the device joins through MAC Association Request, and the coordinator responds with Association Response (see packet #12). The following figure illustrates the MAC association – coordinator. For more details, refer to 5.2. MAC Association.

Figure 6-5. MAC Association – Coordinator

					I.	- /
No.	Source	Destination	Time	Protocol	Leng	Info
3	0×0000	Broadcast	12.239705	ZigBee ZDP	48	Permit Join Request
4	0x0000	Broadcast	12.880855	ZigBee ZDP	48	Permit Join Request
5	0×0000	Broadcast	26.891968	ZigBee	47	Link Status
e	i	Broadcast	27.499082	IEEE 802.15.4	10	Beacon Request
7	0×0000		27.501054	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
8	00:00:00:00:00:0d:ee:b3	0×0000	27.639432	IEEE 802.15.4	21	Association Request, FFD
9)		27.641427	IEEE 802.15.4	5	Ack
10	00:00:00:00:00:0d:ee:b3	0×000	28.137568	IEEE 802.15.4	18	Data Request
11			28.138565	IEEE 802.15.4	5	Ack
12	00:00:00:00:00:0d:ee:b1	00:00:00:00:00:0d:ee:b3	28.141603	IEEE 802.15.4	27	Association Response, PAN: 0x2be2 Addr: 0x0401
13	1		28.142556	IEEE 802.15.4	5	Ack

6.2.2 Service Discovery

Node descriptor – Router/end device requests the node descriptor during the initialization procedure before finding and binding. For more details on the node descriptor, refer to 6.1.3. Zigbee Device Profile (ZDP).

- Packet #18 Shows the Node Descriptor Request from router node
- Packet #20 Shows the Node Descriptor Response from coordinator node

Figure 6-6. Node Descriptor

No.	Source	Destination	Time	Protocol	Leng Info
1	L8 0×0401	0×0000	28.220035	ZigBee ZDP	48 Node Descriptor Request, Nwk Addr: 0x0000
1 3	19		28.220598	IEEE 802.15.4	5 Ack
	20 0×0000	0x0401	28.223487	ZigBee ZDP	62 Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Success
	21		28.225483	IEEE 802.15.4	5 Ack
1	22 0x0401	0×0000	28.226481	ZigBee	45 APS: Ack, Dst Endpt: 0, Src Endpt: 0

The following figure illustrates the Node Descriptor Response from a coordinator device, where, under ZigBee Device Profile, the user can see the following information of the coordinator node:

- Capability Information
- Max Buffer Size
- Server Flags
- Descriptor Capability Field

Figure 6-7. Node Descriptor Response

- > Frame 20: 62 bytes on wire (496 bits), 60 bytes captured (480 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x0401, Src: 0x0000
- > ZigBee Network Layer Data, Dst: 0x0401, Src: 0x0000
- > ZigBee Application Support Layer Data, Dst Endpt: 0, Src Endpt: 0
- ZigBee Device Profile, Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Success

```
Sequence Number: 1
  Status: Success (0)
  Nwk Addr of Interest: 0x0000

    Node Descriptor

     .... .... .000 = Type: 0 (Coordinator)
     .... 0... = Complex Descriptor: False
      .... ....1 .... = User Descriptor: True
     .... 0... .... = 868MHz BPSK Band: False
      ..0. .... = 902MHz BPSK Band: False
     .1.. .... = 2.4GHz OQPSK Band: True
     0... .... = EU Sub-GHz FSK Band: False
   > Capability Information: 0x0f
     Manufacturer Code: 0x1014
     Max Buffer Size: 71
     Max Incoming Transfer Size: 43
     Server Flags: 0x2c40
     Max Outgoing Transfer Size: 43
   > Descriptor Capability Field: 0x00
```

Simple Descriptor – After receiving the Identify Query Response from the coordinator, the router identifies the target endpoint and sends a simple descriptor request to the target endpoint (coordinator). Packets #53 and #55 are Simple Descriptor Request and Simple Descriptor Response from router and coordinator devices, respectively. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

No.		Source	Destination	Time	Protocol	Length	Info
	47	0x3c08	Broadcast	270.393782	ZigBee HA	46	ZCL Identify: Identify Query, Seq: 0
	48	0x0000	0x3c08	270.399198	ZigBee HA	48	ZCL Identify: Identify Query Response, Seq: 0
	49			270.401198	IEEE 802.15.4	3	Ack
	50	0x3c08	0x0000	270.403622	ZigBee	43	APS: Ack, Dst Endpt: 20, Src Endpt: 35
	51			270.405470	IEEE 802.15.4	3	Ack
	52	0x3c08	Broadcast	270.436398	ZigBee HA	46	ZCL Identify: Identify Query, Seq: 0
	53	0x3c08	0x0000	270.442286	ZigBee ZDP	47	Simple Descriptor Request, Nwk Addr: 0x0000, Endpoint: 20
	54			270.444253	IEEE 802.15.4	3	Ack
	55	0x0000	0x3c08	270.446654	ZigBee ZDP	102	Simple Descriptor Response, Nwk Addr: 0x0000, Status: Success
	56			270.450381	IEEE 802.15.4	3	Ack
	57	0x3c08	0x0000	270.453318	ZigBee	43	APS: Ack, Dst Endpt: 0, Src Endpt: 0
	58			270.455157	IEEE 802.15.4	3	Ack

Figure 6-8. Simple Descriptor – Coordinator and Router

The following figure illustrates the Simple Descriptor Response with the list of supported input and output clusters of the coordinator.

Figure 6-9. Simple Descriptor Response

```
    ZigBee Device Profile, Simple Descriptor Response, Nwk Addr: 0x0000, Status: Success Sequence Number: 3
        Status: Success (0)
        Nwk Addr of Interest: 0x0000
        Simple Descriptor Length: 54
    Simple Descriptor
        Endpoint: 20
        Profile: Home Automation (0x0104)
        Application Device: Unknown (0x0007)
        Application Version: 0x0001
        Input Cluster Count: 6
```

- > Input Cluster List
- Output Cluster Count: 17
- > Output Cluster List

6.2.3 Finding and Binding

The following are configured as the target endpoint and initiator endpoint:

- Target endpoint Zigbee coordinator/combined interface
- · Initiator endpoint Zigbee router/extended lights

Coordinator as a target endpoint receives Identify Query request from router, for which the coordinator sends Identify Query Response to the initiator endpoint (router).

The following figure illustrates packets #57 and # 58 are Identify Query request and Identify Query Response from router and coordinator devices respectively.

The target endpoint identifies itself for a finite duration, then handles subsequent finding and binding requests from an initiator endpoint.

Figure 6-10. Identify Query

F7 0:0401	Decederat	214 172086		48 ZCL Identifus Identifus Osenus Cons. 0
57 0x0401	Broadcast	214.1/2086	Zigbee HA	48 ZCL Identity: Identity Query, Seq: 0
58 0×0000	0×0401	214.176690	ZigBee HA	50 ZCL Identify: Identify Query Response, Seq: 0
59		214.177686	IEEE 802.15.4	5 Ack
60 0×0401	0×0000	214.179998	ZigBee	45 APS: Ack, Dst Endpt: 20, Src Endpt: 35
61		214.179998	IEEE 802.15.4	5 Ack

The following figure illustrates the Identify Timeout: 135 seconds for target endpoint.

Figure 6-11. Identify Timeout

~	Zig	Bee Cluster Library Frame								
	>	Frame Control Field: Cluster-specific (0x19)								
		Sequence Number: 0								
		Command: Identify Query Response (0x00)								
	✓ Payload									
		Identify Timeout: 135 seconds								

When the decrementing Identify Timeout attribute reaches zero, the target device terminates the finding and binding procedure for a target endpoint.

6.2.4 Reporting

As a client, the device is capable of making device discovery, service discovery, binding or network management requests. As a server, the device services these requests and responds to them. The client and server roles are non-exclusive, and a given device can act as both client and server.

The device profile describes devices in one of two configurations:

- Client Issues requests to the server via device profile messages
- · Server Issues responses to the client that initiated the device profile message

The following table provides details about the client/server clusters available for the combined interface device type in the Microchip Zigbee stack. For more details, refer to the *ZigBee Alliance Cluster Library Specification Revision* 8 (075123). For more details regarding mandatory or optional clusters for a specific device type, refer to the *Matter Device Library Specification* (1.0).

Note: The combined interface device type is only supported in the Microchip Zigbee stack.

Table 6-1. Supported Clusters – Combined Interface

Device Type	Server Cluster ID	Server Clusters	Client Cluster ID	Client Clusters
	0x0000	Basic	0x0000	Basic
	0x0003	Identify	0x0003	Identify
	0x0004	Groups	0x0004	Groups
	0x000A	Time	0x0005	Scenes
	0x0501	IAS ACE	0x0006	On/Off
	0x0008	Level control	0x0009	Alarms
Combined interface	0x0300	Color control	0x0201	Thermostat
Combined Interface	—	—	0x0202	Fan control
	—	—	0x0406	Occupancy sensing
	—	—	0x0400	Illuminance measurement
	—	—	0x0402	Temperature measurement
	—	—	0x0204	Thermostat UI
	—	—	0x0405	Water content measurement
	—	—	0x0500	IAS zone

In this scenario, the coordinator/combined interface is configured as a target endpoint; therefore, the coordinator device does not report any attributes. It monitors the attributes reported by routers/end devices.

6.2.5 Security

The Zigbee coordinator/combined interface device with address 0×0000 acts as a trust center, and the device with address 0×0401 acts as a Zigbee router (see the following figure). For details on the centralized security mechanism, refer to 6.1.2. Network Security Models.

As per Figure 6-1, MAC association packets were unencrypted. After completion of the association process:

- 1. The trust center sends the Transport Key (coordinator with address 0x0000) from which the joining device receives the link key (router-0x0401) (see packet #14). The APS frame carrying the transport key is encrypted with Link Key A.
- 2. The joined device (router) performs the device announcement (see packets #16 and #17).
- 3. Node descriptor exchange happens between coordinator and router as part of the initialization procedure (see packets #18 to #22).
- 4. Packet #23 shows the router sending the request key to the trust center as a request for link Key B. Link Key A secures the APS frame carrying this request key.
- 5. The trust center transports (packet #25) the requested key via Transport Key with APS encryption by Link Key A.
- 6. Packet #27 shows Verify Key, which ensures that the trust center and joined device agree on the same key.
- 7. Packet #29 shows the Confirm Key, which permits the trust center to confirm a previous request to verify a link key.

No.		Source	Destination	Time	Protocol	Leng	Info
	6		Broadcast	27.499082	IEEE 802.15.4	10	Beacon Request
	7	0x0000		27.501054	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
	8	00:00:00:00:00:0d:ee:b3	0x0000	27.639432	IEEE 802.15.4	21	Association Request, FFD
	9	1		27.641427	IEEE 802.15.4	5	Ack
	10	00:00:00:00:00:0d:ee:b3	0x0000	28.137568	IEEE 802.15.4	18	Data Request
	11			28.138565	IEEE 802.15.4	5	Ack
	12	00:00:00:00:00:0d:ee:b1	00:00:00:00:00:0d:	28.141603	IEEE 802.15.4	27	Association Response, PAN: 0x2be2 Addr: 0x0401
	13			28.142556	IEEE 802.15.4	5	Ack
• 1	14	0x0000	0x0401	28.146545	ZigBee	73	Transport Key
	15	i		28.148174	IEEE 802.15.4	5	Ack
• •	16	0x0401	Broadcast	28.154162	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x0401, Ext Addr: 00:00:00_00:00:00
<u> </u>	17	0x0401	Broadcast	28.191112	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x0401, Ext Addr: 00:00:00 00:00:0
	18	0x0401	0x0000	28.220035	ZigBee ZDP	48	Node Descriptor Request, Nwk Addr: 0x0000
	19	1		28.220598	IEEE 802.15.4	5	Ack
3	20	0x0000	0x0401	28.223487	ZigBee ZDP	62	Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Succ
	21			28.225483	IEEE 802.15.4	5	Ack
	22	0x0401	0x0000	28.226481	ZigBee	45	APS: Ack, Dst Endpt: 0, Src Endpt: 0
4	23	0x0401	0x0000	28.230471	ZigBee	66	Request Key
	24	l.		28.232511	IEEE 802.15.4	5	Ack
5	25	0x0000	0x0401	28.237494	ZigBee	90	Transport Key
	26	i		28.239448	IEEE 802.15.4	5	Ack
6	27	0x0401	0x0000	28.242440	ZigBee	65	Verify Key
	28	1		28.244433	IEEE 802.15.4	5	Ack
7	29	0x0000	0x0401	28.247426	ZigBee	67	Confirm Key, SUCCESS
	30)		28,249421	IEEE 802.15.4	5	Ack

Figure 6-12. Trust Center Key Exchange Centralized Network

:ee:b3 :ee:b3

Figure 6-13. APS Tunnel Transport Key

- ZigBee Application Support Layer Command
 - Frame Control Field: Command (0x21) Counter: 203
 - ✤ ZigBee Security Header

	>	Security Control Field: 0x30, Key Id: Key-Transport Key, Extended Nonce								
		Frame Counter: 1								
	Extended Source: 00:00:00_00:00:0d:ee:b1 (00:00:00:00:00:0d:ee:b1)									
	Message Integrity Code: 22 47 99 22									
		[Key: 5a 69 67 42 65 65 41 6c 6c 69 61 6e 63 65 30 39]								
		[Key Label:]								
~	Command Frame: Transport Key									
	Command Identifier: Transport Key (0x05)									
		Key Type: Standard Network Key (0x01)								
		Кеу: сс								
		Sequence Number: 0								
		Extended Destination: 00:00:00_00:00:0d:ee:b3 (00:00:00:00:00:0d:ee:b3)								
		Extended Source: 00:00:00_00:00:0d:ee:b1 (00:00:00:00:00:0d:ee:b1)								

The following figure illustrates the Request Key, where Link Key A (5a 69 67 42 65 65 41 6c 6c 69 61 6e 63 65 30 39) is highlighted, that encrypts the APS layer.

Figure 6-14. Request Key

```
    ZigBee Application Support Layer Command

       Frame Control Field: Command (0x21)
    5
       Counter: 142
      ZigBee Security Header
           Security Control Field: 0x20, Key Id: Link Key, Extended Nonce
        >
           Frame Counter: 1
           Extended Source: 00:00:00 00:00:0d:ee:b3 (00:00:00:00:00:0d:ee:b3)
           Message Integrity Code: 2a c0 e7 b4
           [Key: 5a 69 67 42 65 65 41 6c 6c 69 61 6e 63 65 30 39]
           [Key Label: ]
       Command Frame: Request Key
           Command Identifier: Request Key (0x08)
           Key Type: Trust Center Link Key (0x04)
  Data (8 bytes)
       Data: 00 00 00 00 00 00 00 00
       [Length: 8]
```

The following figure illustrates the Transport Key, where Link Key A (5a 69 67 42 65 65 41 6c 6c 69 61 6e 63 65 30 39) is highlighted, that encrypts the APS layer. The following figure illustrates the Link Key B (fb 40 45 17 7a 0a bc 68 e3 35 ce 4b 93 12 63 0a), which is being transported from the trust center to the router.

Figure 6-15. Transport Key

```
    ZigBee Application Support Layer Command
```

- > Frame Control Field: Command (0x21) Counter: 206
 > ZigBee Security Header
 > Security Control Field: 0x38, Key Id: Key-Load Key, Extended Nonce Frame Counter: 2 Extended Source: 00:00:00_00:00:0d:ee:b1 (00:00:00:00:00:0d:ee:b1) Message Integrity Code: 88 f7 fc 08
 [Key: 5a 69 67 42 65 65 41 6c 6c 69 61 6e 63 65 30 39] [Key Label:]
 > Command Frame: Transport Key Command Identifier: Transport Key (0x05) Key Type: Trust Center Link Key (0x04)
 > Key: fb 40 45 17 7a 0a bc 68 e3 35 ce 4b 93 12 63 0a Extended Destination: 00:00:00_00:00:00:0d:ee:b3 (00:00:00:00:00:00:0d:ee:b3)
 - Extended Source: 00:00:00_00:00:0d:ee:b1 (00:00:00:00:00:0d:ee:b1)

6.3 Zigbee Router

The Zigbee router can form a distributed network. If it does not form a distributed network, it can join a centralized network formed by the Zigbee coordinator.

The following section elaborates the association, commissioning, finding and binding, attribute reporting and security key exchange procedure of the Zigbee router device type (with the Zigbee coordinator).

6.3.1 Commissioning

6.3.1.1 Network Steering by Zigbee Router/Extended Light

In the following figure, the packet #6 shows the network steering procedure starts with the router device broadcasting the Beacon Request. After receiving the beacon frames from the coordinator, the router device joins through MAC association.

MAC Association – The device tries to join a network through MAC association (as joining unknown network for the first time). Packet #8 to #12 shows the MAC association procedure. For more details on MAC Association, refer to 5.2. MAC Association.

Figure 6-16. Network Steering – Router

No.		Source	Destination	Time	Protocol	Leng	Info
	6		Broadcast	27.499082	IEEE 802.15.4	10	Beacon Request
	7	0x0000		27.501054	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
	8	00:00:00:00:00:0d:ee:b3	0x0000	27.639432	IEEE 802.15.4	21	Association Request, FFD
	9			27.641427	IEEE 802.15.4	5	Ack
	10	00:00:00:00:00:0d:ee:b3	0x0000	28.137568	IEEE 802.15.4	18	Data Request
	11			28.138565	IEEE 802.15.4	5	Ack
	12	00:00:00:00:00:0d:ee:b1	00:00:00:00:00:0d:	28.141603	IEEE 802.15.4	27	Association Response, PAN: 0x2be2 Addr: 0x0401
	13			28,142556	IEEE 802.15.4	5	Ack

6.3.1.2 Distributed Network Formation by Zigbee Router/Extended Light

Zigbee routers can form distributed networks. After successfully forming the distributed network, broadcast the device announcement packets and permit join requests to notify other routers/end devices that are searching for a network to join. After sending the end device/router a beacon request, the parent router responds with beacon frame, which leads to MAC association. After successful MAC association, the end device/router joins the network. The link key is communicated between the parent router and the end device/router through transport key for security purpose. For more details, refer to 6.1.2. Network Security Models.

6.3.2 Device Discovery

Device Announcement – The Zigbee router device with NWK address 0x0401 broadcasts the packets #16 and #17 that show the Device Announcement. For more details, refer to 6.1.3. Zigbee Device Profile (ZDP).

Figure 6-17. Device Announcement

No.	Source	Destination	Time	Protocol	Leng	Info
16	0x0401	Broadcast	28.154162	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x0401, Ext Addr: 00:00:00_00:00:0d:ee:b3
17	0x0401	Broadcast	28.191112	ZigBee ZDP	57	' Device Announcement, Nwk Addr: 0x0401, Ext Addr: 00:00:00_00:00:0d:ee:b3

Figure 6-18. Device Announcement

- > Frame 16: 57 bytes on wire (456 bits), 55 bytes captured (440 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: Broadcast, Src: 0x0401
- > ZigBee Network Layer Data, Dst: Broadcast, Src: 0x0401
- ZigBee Application Support Layer Data, Dst Endpt: 0, Src Endpt: 0
 - Frame Control Field: Data (0x08) Destination Endpoint: 0 Device Announcement (Cluster ID: 0x0013) Profile: ZigBee Device Profile (0x0000) Source Endpoint: 0 Counter: 140
- ✓ ZigBee Device Profile, Device Announcement, Nwk Addr: 0x0401, Ext Addr: 00:00:00_00:00:ee:b3
 - Sequence Number: 0
 - Nwk Addr of Interest: 0x0401

Extended Address: 00:00:00_00:00:0d:ee:b3 (00:00:00:00:00:0d:ee:b3)

- ➤ Capability Information: 0x8e
 -0 = Alternate Coordinator: False
 -1. = Full-Function Device: True
 -1.. = AC Power: True
 - 1... = Rx On When Idle: True
 - .0.. = Security Capability: False
 - 1... = Allocate Short Address: True

6.3.3 Service Discovery

Node Descriptor – The router/end device requests the node descriptor during the initialization procedure before finding and binding to discover the capability information and other information of the coordinator device in the network. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

The following figure illustrates packets #18 and #20 as the Node Descriptor Request and Node Descriptor Response from the router and coordinator nodes, respectively.

Figure 6-19. Node Descriptor

No.		Source	Destination	Time	Protocol	Leng	Info
	18	0x0401	0×0000	28.220035	ZigBee ZDP	48	Node Descriptor Request, Nwk Addr: 0x0000
	19			28.220598	IEEE 802.15.4	5	Ack
	20	0×0000	0×0401	28.223487	ZigBee ZDP	62	Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Success
	21			28.225483	IEEE 802.15.4	5	Ack
	22	0×0401	0×0000	28.226481	ZigBee	45	APS: Ack, Dst Endpt: 0, Src Endpt: 0

The following figure illustrates the Node Descriptor Response from a coordinator device. The user can see the following under ZigBee Device Profile:

- Capability Information of the coordinator node
- Max Buffer Size
- Server Flags
- Descriptor Capability Field

Figure 6-20. Node Descriptor Response

> Frame 20: 62 bytes on wire (496 bits), 60 bytes captured (480 bits) on interface \\.\pipe\Atmel_Wireshark, id 0 > IEEE 802.15.4 Data, Dst: 0x0401, Src: 0x0000 > ZigBee Network Layer Data, Dst: 0x0401, Src: 0x0000 > ZigBee Application Support Layer Data, Dst Endpt: 0, Src Endpt: 0 ✓ ZigBee Device Profile, Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Success Sequence Number: 1 Status: Success (0) Nwk Addr of Interest: 0x0000 Node Descriptor000 = Type: 0 (Coordinator) 0... = Complex Descriptor: False1 = User Descriptor: True 0... = 868MHz BPSK Band: False ..0. = 902MHz BPSK Band: False .1.. = 2.4GHz OQPSK Band: True 0... = EU Sub-GHz FSK Band: False > Capability Information: 0x0f Manufacturer Code: 0x1014 Max Buffer Size: 71 Max Incoming Transfer Size: 43 > Server Flags: 0x2c40 Max Outgoing Transfer Size: 43 > Descriptor Capability Field: 0x00

Simple Descriptor – After receiving the Identify Query Response from the coordinator, the router identifies the target endpoint and sends a simple descriptor request to the target endpoint (coordiantor). Packets #53 and #55 are Simple Descriptor Request and Simple Descriptor Response from router and coordinator devices, respectively. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

Figure 6-21. Simple Descriptor – Coordinator and Router

No.	Source	Destination	Time	Protocol	Length	Info
47	0x3c08	Broadcast	270.393782	ZigBee HA	46	ZCL Identify: Identify Query, Seq: 0
48	0x0000	0x3c08	270.399198	ZigBee HA	48	ZCL Identify: Identify Query Response, Seq: 0
49			270.401198	IEEE 802.15.4	3	Ack
50	0x3c08	0x0000	270.403622	ZigBee	43	APS: Ack, Dst Endpt: 20, Src Endpt: 35
51			270.405470	IEEE 802.15.4	3	Ack
52	0x3c08	Broadcast	270.436398	ZigBee HA	46	ZCL Identify: Identify Query, Seq: 0
53	0x3c08	0x0000	270.442286	ZigBee ZDP	47	Simple Descriptor Request, Nwk Addr: 0x0000, Endpoint: 20
54			270.444253	IEEE 802.15.4	3	Ack
55	0x0000	0x3c08	270.446654	ZigBee ZDP	102	Simple Descriptor Response, Nwk Addr: 0x0000, Status: Success
56			270.450381	IEEE 802.15.4	3	Ack
57	0x3c08	0x0000	270.453318	ZigBee	43	APS: Ack, Dst Endpt: 0, Src Endpt: 0
58			270.455157	IEEE 802.15.4	3	Ack

The following figure illustrates the Simple Descriptor Response with the list of supported input and output clusters of the coordinator.

Figure 6-22. Simple Descriptor Response

```
    ZigBee Device Profile, Simple Descriptor Response, Nwk Addr: 0x0000, Status: Success Sequence Number: 3
        Status: Success (0)
        Nwk Addr of Interest: 0x0000
        Simple Descriptor Length: 54
    Simple Descriptor
        Endpoint: 20
        Profile: Home Automation (0x0104)
        Application Device: Unknown (0x0007)
        Application Version: 0x0001
        Input Cluster Count: 6
        Input Cluster List
        Output Cluster List
        Output Cluster List
        Output Cluster List
        Output Cluster List
```

6.3.4 Finding and Binding

The user can configure the target endpoint/initiator endpoint as the following:

- · Zigbee router/extended lights As the initiator endpoint
- Zigbee coordinator/combined interface As the target endpoint

The following figure illustrates packets #47 and #48 as the Identify Query Request and Identify Query Response from router and coordinator devices, respectively.

The router, as an initiator, broadcasts Identify Query for identifying target endpoints. After receiving the Identify Query Response from a target endpoint, the initiator unicasts the Simple Descriptor Request to the target device. The initiator endpoint, then, searches for any matching clusters between itself and the target endpoint; then, for each match found, it creates a corresponding entry in its binding table. If there is a request for group binding, the initiator endpoint configures group membership of the target endpoint.

After receiving the Identify Query Response, the router identifies the target endpoint and requests the Simple Descriptor. Packets #53 and #55 are Simple Descriptor Request and Simple Descriptor Response from the router and coordinator devices, respectively.

Figure 6-23. Finding and Binding – Router

lo.		Source	Destination	Time	Protocol	Length	h Info
1	47	0x3c08	Broadcast	270.393782	ZigBee HA	46	6 ZCL Identify: Identify Query, Seq: 0
	48	0x0000	0x3c08	270.399198	ZigBee HA	48	8 ZCL Identify: Identify Query Response, Seq: 0
	49			270.401198	IEEE 802.15.4	3	3 Ack
	50	0x3c08	0x0000	270.403622	ZigBee	43	3 APS: Ack, Dst Endpt: 20, Src Endpt: 35
	51			270.405470	IEEE 802.15.4	З	3 Ack
	52	0x3c08	Broadcast	270.436398	ZigBee HA	46	6 ZCL Identify: Identify Query, Seq: 0
[53	0x3c08	0x0000	270.442286	ZigBee ZDP	47	7 Simple Descriptor Request, Nwk Addr: 0x0000, Endpoint: 20
	54			270.444253	IEEE 802.15.4	3	3 Ack
[55	0x0000	0x3c08	270.446654	ZigBee ZDP	102	2 Simple Descriptor Response, Nwk Addr: 0x0000, Status: Success
	56			270.450381	IEEE 802.15.4	3	3 Ack
	57	0x3c08	0x0000	270.453318	ZigBee	43	3 APS: Ack, Dst Endpt: 0, Src Endpt: 0
	58			270.455157	IEEE 802.15.4	з	3 Ack

The following figure illustrates the Simple Descriptor Response, providing the details about the list of supported input and output clusters.

Figure 6-24. Simple Descriptor Response

```
    ZigBee Device Profile, Simple Descriptor Response, Nwk Addr: 0x0000, Status: Success Sequence Number: 3
        Status: Success (0)
        Nwk Addr of Interest: 0x0000
        Simple Descriptor Length: 54
    Simple Descriptor
        Endpoint: 20
        Profile: Home Automation (0x0104)
        Application Device: Unknown (0x0007)
        Application Version: 0x0001
        Input Cluster Count: 6
        Input Cluster Count: 17
        Output Cluster List
```

6.3.5 Reporting

The following table provides details about the client/server clusters available for extended color light device types in the Zigbee stack. For more details, refer to the *ZigBee Alliance Cluster Library Specification Revision 8* (075123). For more details regarding mandatory or optional clusters for specific device type, refer to the *Matter Device Library Specification* (1.0).

Device Type	Cluster ID	Server Clusters	Client Clusters	Attribute Identifier	Attribute Name
Extended color light	0x0000	Basic	Basic	—	—
	0x0003	Identify	Identify	—	
	0x0004	Groups	Groups		
	0x0005	Scenes	—	—	—
	0x0006	On/Off ⁽¹⁾		0x0000 ⁽¹⁾	On/Off ⁽¹⁾
	0x0008	Level control ⁽¹⁾	—	0x0000 ⁽¹⁾	Current level ⁽¹⁾
	0x0300	Color control	_	—	

Table 6-2. Supported Clusters – Extended Color Light

Note:

1. In this scenario, the router/extended light device reports the On/Off (0x0000) attribute of the On/Off (0x0006) cluster and the current level (0x0000) attribute of the level control (0x0008) cluster to the coordinator/ combined interface.

The extended color light is a lighting device that can be switched ON or OFF. The user can adjust the intensity of light, and the bound controller device (color controller) adjusts the color. The device supports the adjustment of color via hue/saturation, enhanced hue, color looping, XY coordinates and color temperature. In addition, the user can switch ON/OFF via a bound occupancy sensor.

Reporting Attributes – The device uses the Report Attributes command to report the values of one or more of its attributes to another device. Individual clusters define which attributes are to be reported and at what interval.

No.	Source	Destination	Time	Protocol	Leng	Info				
	78 0x0401	0×0000	294.270097	ZigBee HA	52	ZCL:	Report	Attributes,	Seq:	1
	79		294.271856	IEEE 802.15.4	5	Ack				_
	80 0x0000	Broadcast	296.359236	ZigBee	50	Link	Status			
	81 0×0401	Broadcast	296.590545	ZigBee	50	Link	Status			
	82 0×0000	Broadcast	311.478669	ZigBee	50	Link	Status			
	83 0x0401	Broadcast	311.633395	ZigBee	50	Link	Status			
	84 0×0000	Broadcast	326.602218	ZigBee	50	Link	Status			
	85 0x0401	Broadcast	326.673345	ZigBee	50	Link	Status			
	86 0x0401	0×0000	334.276770	ZigBee HA	52	ZCL:	Report	Attributes,	Seq:	2
	87		334.277767	IEEE 802.15.4	5	Ack				_
	88 0×0401	Broadcast	341.796805	ZigBee	50	Link	Status			
	89 0×0000	Broadcast	356.805413	ZigBee	50	Link	Status			
	90 0x0401	Broadcast	356.876190	ZigBee	50	Link	Status			
	91 0×0000	Broadcast	371.928857	ZigBee	50	Link	Status			
	92 0x0401	Broadcast	371.957362	ZigBee	50	Link	Status			
	93 0x0401	0×0000	374.278997	ZigBee HA	52	ZCL:	Report	Attributes,	Seq:	3
	94		374.282998	IEEE 802.15.4	5	Ack				_
	95 0×0000	Broadcast	387.090623	ZigBee	50	Link	Status			
	96 0x0401	Broadcast	387.120543	ZigBee	50	Link	Status			
	97 0×0000	Broadcast	402.253476	ZigBee	50	Link	Status			
	98 0×0401	Broadcast	402.282435	ZigBee	50	Link	Status			

Figure 6-25. Report Attributes – Router

The following figure illustrates the On/Off attribute of On/Off cluster.

Figure 6-26. On/Off Cluster – On/Off Attribute

```
    ZigBee Application Support Layer Data, Dst Endpt: 20, Src Endpt: 35

   ✓ Frame Control Field: Data (0x00)
          .... 00.. = Delivery Mode: Unicast (0x0)
          ..0. .... = Security: False
          .0.. .... = Acknowledgement Request: False
         0... = Extended Header: False
      Destination Endpoint: 20
     Cluster: On/Off (0x0006)
      Profile: Home Automation (0x0104)
      Source Endpoint: 35
      Counter: 148

    ZigBee Cluster Library Frame, Command: Report Attributes, Seq: 2

   > Frame Control Field: Profile-wide (0x18)
      Sequence Number: 2
      Command: Report Attributes (0x0a)

    Attribute Field

         Attribute: OnOff (0x0000)
         Data Type: Boolean (0x10)
         On/off Control: Off (0x00)
```

The following figure illustrates the Current Level attribute of Cluster: Level Control.

Figure 6-27. Level Control Cluster – Current Level Attribute

```
    ZigBee Application Support Layer Data, Dst Endpt: 20, Src Endpt: 35

    Frame Control Field: Data (0x00)

          .... 00.. = Delivery Mode: Unicast (0x0)
          ..0. .... = Security: False
          .0.. .... = Acknowledgement Request: False
         0... = Extended Header: False
      Destination Endpoint: 20
     Cluster: Level Control (0x0008)
      Profile: Home Automation (0x0104)
      Source Endpoint: 35
      Counter: 147

    ZigBee Cluster Library Frame, Command: Report Attributes, Seq: 1

   > Frame Control Field: Profile-wide (0x18)
      Sequence Number: 1
      Command: Report Attributes (0x0a)

    Attribute Field

         Attribute: Current Level (0x0000)
         Data Type: 8-Bit Unsigned Integer (0x20)
         Current Level: 127
```

In this scenario, the router device and coordinator device are configured as the following:

- Router device Reports the On/Off attribute of the On/Off cluster
- Coordinator device The current level attribute of the level control cluster

6.3.6 Security

For security key exchange in a centralized network between trust center and router, refer to 6.2.5. Security.

6.4 Zigbee End Device

The Zigbee end device joins one of the following:

- Coordinator Forms centralized network
- Router Forms distributed network

After joining, the multisensor device starts the ZCL attribute reporting of sensor data, such as temperature, occupancy, light and humidity after connecting to the network.

The following section elaborates the association, commissioning, finding and binding, attribute reporting and security key exchange procedure of the Zigbee end device type (with Zigbee coordinator).

6.4.1 Commissioning

6.4.1.1 Network Steering by Zigbee End Device/Multisensor

MAC Association – The end device tries to join a network through the MAC association procedure (as joining unknown network for the first time). End device/router broadcasts Beacon Request, and the coordinators/routers in the network sends Beacon Response. The MAC association process is carried out between the end device/router and the coordinator/router. For more details, refer to 5.2. MAC Association.

Figure 6-28. Network Steering – End Device

No.	Source	Destination	Time	Protocol	Lengt	Info
	5	Broadcast	36.992308	IEEE 802.15.4	10	Beacon Request
	7 0×0000		36.993083	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
;	3 00:00:00:00:00:0d:ee:b4	0×0000	37.131442	IEEE 802.15.4	21	Association Request, RFD
1	9		37.132444	IEEE 802.15.4	5	Ack
10	00:00:00:00:00:0d:ee:b4	0×0000	37.631124	IEEE 802.15.4	18	Data Request
1:	L		37.631124	IEEE 802.15.4	5	Ack
1	2 00:00:00:00:00:0d:ee:b1	00:00:00:00:00:0d:ee:b4	37.635136	IEEE 802.15.4	27	Association Response, PAN: 0x0733 Addr: 0x017d
1	3		37.635136	IEEE 802.15.4	5	Ack

6.4.2 Device Discovery

Device Announcement – Packet #20 illustrates the Zigbee end device broadcasting the Device Announcement with NWK address 0x017d. For more details, refer to 6.1.3. Zigbee Device Profile (ZDP).

Figure 6-29. Device Announcement – End Device

No.	Source	Destination	Time	Protocol	Length	Info
20	0x017d	Broadcast	37.684574	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x017d, Ext Addr: 00:00:00_00:00:0d:ee:b4

Figure 6-30. Device Announcement Packet

```
> Frame 20: 57 bytes on wire (456 bits), 55 bytes captured (440 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
```

- > IEEE 802.15.4 Data, Dst: 0x0000, Src: 0x017d
- > ZigBee Network Layer Data, Dst: Broadcast, Src: 0x017d
- > ZigBee Application Support Layer Data, Dst Endpt: 0, Src Endpt: 0
- ZigBee Device Profile, Device Announcement, Nwk Addr: 0x017d, Ext Addr: 00:00:00:00:00:0d:ee:b4 Sequence Number: 0
 - Nwk Addr of Interest: 0x017d
 - Extended Address: 00:00:00_00:00:0d:ee:b4 (00:00:00:00:00:0d:ee:b4)
 - ✓ Capability Information: 0x80
 -0 = Alternate Coordinator: False
 -0. = Full-Function Device: False

 - 0... = Rx On When Idle: False
 - .0.. = Security Capability: False
 - 1... = Allocate Short Address: True

6.4.3 End Device Timeout

After joining or rejoining the network, the end device sends an End Device Timeout Request command to its parent with the desired timeout value. The parent updates the timeout in its neighbor table for the corresponding end device entry. The parent generates an End Device Timeout Response command with a status as Success and with the Parent Information field set to MAC Data Poll Keepalive method.

The end device sends the End Device Timeout Request command to inform its parent about the timeout requirements. This provides the parent with the ability to delete the child entry from the neighbor table if the child does not communicate with the parent in the specified amount of time. For more details, refer to the *Zigbee Specification Revision 22 1.0* (05-3474-22).

Figure 6-31. End Device Timeout Sequence

The following figure illustrates the complete scenario of the End Device Timeout setup. Packets #24 and #32 illustrate the End Device Timeout Request and End Device Timeout Response from the end device and coordinator devices, respectively.

No.		Source	Destination	Time	Protocol	Leng	Info
	6		Broadcast	36.992308	IEEE 802.15.4	10	Beacon Request
	7	0000x0		36.993083	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
	8	00:00:00:00:00:0d:ee:b4	0x0000	37.131442	IEEE 802.15.4	21	Association Request, RFD
	9			37.132444	IEEE 802.15.4	5	Ack
	10	00:00:00:00:00:0d:ee:b4	0x0000	37.631124	IEEE 802.15.4	18	Data Request
	11			37.631124	IEEE 802.15.4	5	Ack
	12	00:00:00:00:00:0d:ee:b1	00:00:00:00:00:0d:ee:b4	37.635136	IEEE 802.15.4	27	Association Response, PAN: 0x0733 Addr: 0x017d
	13			37.635136	IEEE 802.15.4	5	Ack
	14	0x017d	0x0000	37.636115	IEEE 802.15.4	12	Data Request
	15			37.637112	IEEE 802.15.4	5	Ack
	16	0×0000	0x017d	37.640103	ZigBee	73	Transport Key
	17			37.641101	IEEE 802.15.4	5	Ack
	18	0x017d	0x0000	37.642098	IEEE 802.15.4	12	Data Request
	19			37.643096	IEEE 802.15.4	5	Ack
	20	0x017d	Broadcast	37.684574	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x017d, Ext Addr: 00:00:00_00:00:0d:ee:b4
	21			37.685572	IEEE 802.15.4	5	Ack
	22	0x017d	0x0000	37.689054	IEEE 802.15.4	12	Data Request
_	23			37.690053	IEEE 802.15.4	5	Ack
[24	0x017d	0x0000	37.723371	ZigBee	56	End Device Timeout Request
	25			37.725366	IEEE 802.15.4	5	Ack
	26	0x017d	0x0000	37.726364	ZigBee ZDP	48	Node Descriptor Request, Nwk Addr: 0x0000
	27	0x017d	Broadcast	37.730383	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x017d, Ext Addr: 00:00:00_00:00:0d:ee:b4
	28	0x017d	0x0000	37.736369	ZigBee ZDP	48	Node Descriptor Request, Nwk Addr: 0x0000
	29			37.737367	IEEE 802.15.4	5	Ack
	30	0x017d	0×0000	38.223383	IEEE 802.15.4	12	Data Request
_	31			38.224385	IEEE 802.15.4	5	Ack
	32	0x0000	0x017d	38.226428	ZigBee	56	End Device Timeout Response, Success
_	33			38.228657	IEEE 802.15.4	5	Ack

The following figure illustrates the End Device Timeout Response with Parent Information field set to MAC Data Poll Keepalive and the MAC Data Poll Keepalive field set to True.

Figure 6-33. End Device Timeout Response

- > Frame 32: 56 bytes on wire (448 bits), 54 bytes captured (432 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x017d, Src: 0x0000

```
✓ ZigBee Network Layer Command, Dst: 0x017d, Src: 0x0000
```

```
> Frame Control Field: 0x1a09, Frame Type: Command, Discover Route: Suppress, Security, Destination, Extended Source Command
   Destination: 0x017d
   <[Address: 0x017d]>
   Source: 0x0000
   <[Address: 0x0000]>
   Radius: 1
   Sequence Number: 159
   Destination: 00:00:00_00:00:0d:ee:b4 (00:00:00:00:0d:ee:b4)
   <[Extended Address: 00:00:00_00:00:0d:ee:b4 (00:00:00:00:0d:ee:b4)]>
   Extended Source: 00:00:00 00:00:0d:ee:b1 (00:00:00:00:00:0d:ee:b1)
   <[Extended Address: 00:00:00_00:00:0d:ee:b1 (00:00:00:00:0d:ee:b1)]>
> ZigBee Security Header
✔ Command Frame: End Device Timeout Response, Success
       Command Identifier: End Device Timeout Response (0x0c)
        Status: Success (0)
    ✓ Parent Information: 0x01, MAC Data Poll Keepalive
            .... 1 = MAC Data Poll Keepalive: True
            .... ..0. = End Device Timeout Request Keepalive: False
            .... .0.. = Power Negotiation Supported: False
```

6.4.4 Service Discovery

The router/end device requests Node Descriptor during the initialization procedure before finding and binding to discover the Capability Information and other details of the Coordinator device in the network. For more details, refer to 6.1.3. Zigbee Device Profile (ZDP).

Packet #28 and #36 show the Node Descriptor Request and Node Descriptor Response from the router and coordinator devices, respectively. Packet #40 shows the APS: ACK by end device for Node Descriptor Response from Coordinator.

No.		Source	Destination	Time	Protocol	Length	Info
	28	0x017d	0×0000	37.736369	ZigBee ZDP	48	Node Descriptor Request, Nwk Addr: 0x0000
	29			37.737367	IEEE 802.15.4	5	Ack
	30	0x017d	0×0000	38.223383	IEEE 802.15.4	12	Data Request
	31			38.224385	IEEE 802.15.4	5	Ack
	32	0×0000	0x017d	38.226428	ZigBee	56	End Device Timeout Response, Success
	33			38.228657	IEEE 802.15.4	5	Ack
	34	0x017d	0×0000	38.228657	IEEE 802.15.4	12	Data Request
	35			38.229655	IEEE 802.15.4	5	Ack
	36	0×0000	0x017d	38.233083	ZigBee ZDP	62	Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Success
	37			38.234151	IEEE 802.15.4	5	Ack
	38	0x017d	0×0000	38.234151	IEEE 802.15.4	12	Data Request
	39			38.234151	IEEE 802.15.4	5	Ack
	40	0x017d	0×0000	38.274348	ZigBee	45	APS: Ack, Dst Endpt: 0, Src Endpt: 0
	41			38.276347	IEEE 802.15.4	5	Ack

Figure 6-34. Node Descriptor – End Device

The following figure illustrates the Node Descriptor Response from a Coordinator device. Under ZigBee Device Profile field, the user can see the following:

- Capability Information of the coordinator node
- Max Buffer Size
- Server Flags
- Descriptor Capability Field

Figure 6-35. Node Descriptor Response – End Device

```
▼ ZigBee Device Profile, Node Descriptor Response, Rev: 22, Nwk Addr: 0x0000, Status: Success
      Sequence Number: 1
      Status: Success (0)
      Nwk Addr of Interest: 0x0000
     Node Descriptor
          .... .... .000 = Type: 0 (Coordinator)
          .... 0... = Complex Descriptor: False
          .... = User Descriptor: True
          .... 0... .... = 868MHz BPSK Band: False
          ..0. .... = 902MHz BPSK Band: False
          .1.. .... = 2.4GHz OQPSK Band: True
          0... .... = EU Sub-GHz FSK Band: False

    Capability Information: 0x0f

              .... ...1 = Alternate Coordinator: True
              .... ..1. = Full-Function Device: True
              .... .1.. = AC Power: True
              .... 1... = Rx On When Idle: True
              .0.. .... = Security Capability: False
              0... = Allocate Short Address: False
          Manufacturer Code: 0x1014
          Max Buffer Size: 71
          Max Incoming Transfer Size: 43
       >
          Server Flags: 0x2c40
          Max Outgoing Transfer Size: 43
          Descriptor Capability Field: 0x00
       >
```

6.4.5 Finding and Binding

The user can configure the target endpoint/initiator endpoint as the following:

- · Zigbee end device/multisensor As the initiator endpoint
- Zigbee coordinator/combined interface As the target endpoint

The following figure illustrates packets #416 and #419 as Identify Query Request and Identify Query Response from the end device and coordinator devices, respectively.

The end device as an initiator broadcasts Identify Query for identifying target endpoints. After receiving Identify Query Response from a target endpoint, the initiator unicasts the Simple Descriptor Request to the target device. The initiator endpoint, then, searches for any matching clusters between itself and the target endpoint and for each match found. It creates a corresponding entry in its binding table. If there is a request for group binding, the initiator endpoint configures group membership of the target endpoint.

After receiving Identify Query Response, that is, identifying the target endpoint, the target endpoint requests the Simple Descriptor.

Packets #425 and #430 are Simple Descriptor Request and Simple Descriptor Response from end device and coordinator devices, respectively.

Figure 6-36	Finding and	Binding -	End Device
-------------	-------------	-----------	------------

No.		Source	Destination	Time	Protocol	Length	Info
	416	0x017d	Broadcast	132.870587	ZigBee HA	48	ZCL Identify: Identify Query, Seq: 0
	417	0x017d	0×0000	133.285917	IEEE 802.15.4	12	Data Request
	418			133.286616	IEEE 802.15.4	5	Ack
419		0×0000	0x017d	133.288613	ZigBee HA	50	ZCL Identify: Identify Query Response, Seq: 0
	420			133.290607	IEEE 802.15.4	5	Ack
	421	0x017d	0×0000	133.293599	ZigBee	45	APS: Ack, Dst Endpt: 20, Src Endpt: 24
	422			133.294598	IEEE 802.15.4	5	Ack
	423	0x017d	0×0000	133.294598	IEEE 802.15.4	12	Data Request
	424			133.295596	IEEE 802.15.4	5	Ack
	425	0x017d	0×0000	133.335107	ZigBee ZDP	49	Simple Descriptor Request, Nwk Addr: 0x0000, Endpoint: 20
	426			133.336105	IEEE 802.15.4	5	Ack
	427	0x017d	Broadcast	133.509540	ZigBee HA	48	ZCL Identify: Identify Query, Seq: 0
	428	0x017d	0×0000	133.834958	IEEE 802.15.4	12	Data Request
	429			133.836744	IEEE 802.15.4	5	Ack
	430	0×0000	0x017d	133.841488	ZigBee	104	Data, Dst: 0x017d, Src: 0x0000
	431			133.842490	IEEE 802.15.4	5	Ack
	432	0x017d	0×0000	133.843492	IEEE 802.15.4	12	Data Request
	433			133.844486	IEEE 802.15.4	5	Ack
	434	0x017d	0×0000	133.885790	ZigBee	45	APS: Ack, Dst Endpt: 0, Src Endpt: 0
	435			133.886789	IEEE 802.15.4	5	Ack

6.4.6 Reporting

The following table provides details about the client/server clusters available for the multi-sensor device type in the Microchip Zigbee stack. For more details, refer to the *ZigBee Alliance Cluster Library Specification Revision 8* (075123). For more details regarding mandatory or optional clusters for a specific device type, refer to the *Matter Device Library Specification* (1.0).

Device Type Cluster ID Ser		Server Clusters	Client Clusters	Attribute Identifier	Attribute Name	
	0x0000	Basic	Basic	_	—	
	0x0003	Identify	Identify	<u> </u>	—	
	0x0004	Groups	Groups		_	
	0x0406	Occupancy sensing ⁽¹⁾	<u> </u>	0x0000 ⁽¹⁾	Occupancy ⁽¹⁾	
Multi sensor	0x0400	Illuminance measurement ⁽¹⁾	_	0x0000 ⁽¹⁾	Measured value ⁽¹⁾	
	0x0402	Temperature measurement	_			
	0x0405	Water content measurement	_			
	0x0B05	Diagnostics			—	

Table 6-3. Supported Clusters – Multi-Sensor/Sensor Device Type

Note:

- 1. In this scenario, the end device/multi-sensor reports the occupancy (0x0000) attribute of the occupancy sensing (0x0406) cluster and the measured value (0x0000) attribute of the illuminance measurement (0x0400) cluster to the router/extended light device.
- Configure Reporting Use the Configure Reporting command to configure the reporting mechanism for one or more of the attributes of a cluster. The following figure illustrates the packet #436 that indicates Configure Reporting Request to coordinator by end device.

Figure 6-37. Configure Reporting – End Device

No.		Source	Destination	Time	Protocol	Leng	Info	
	436	0x017d	0×0000	133.891775	ZigBee HA	53	ZCL:	Configure Reporting, Seq: 2
	437			133.892784	IEEE 802.15.4	5	Ack	
	438	0x017d	0×0000	134.385302	IEEE 802.15.4	12	Data	Request
	439			134.385302	IEEE 802.15.4	5	Ack	
	440	0×0000	0x017d	134.388299	ZigBee HA	52	ZCL:	Configure Reporting Response, Seq: 2
	441			134.390292	IEEE 802.15.4	5	Ack	
	442	0x017d	0×0000	134.390292	IEEE 802.15.4	12	Data	Request
	443			134.390292	IEEE 802.15.4	5	Ack	
	444	0x017d	0×0000	134.425562	ZigBee	45	APS:	Ack, Dst Endpt: 20, Src Endpt: 24
	445			134.427559	IEEE 802.15.4	5	Ack	

The Direction field specifies whether to report values of the attribute or whether to receive reports of the attribute.

The following figure illustrates the Direction field under Reporting Configuration Record in ZCL, which is set to Received, indicating that the coordinator device must receive the attribute values. It also indicates that the sender (end device) can configure its reporting mechanism to transmit/report the required/ desired attributes to the receiver (coordinator). Based on the current state of the sender's bindings, the sender sends reports to the receiver.

In the preceding scenario (see Figure 6-37), the user must configure the end device using the Configure Reporting command to report Occupancy Sensing and Illumination Measurement (of light sensor) attributes to the coordinator device.

The occupancy sensor is a measurement and sensing device that can measure and report the occupancy state within some area.

The light sensor is a measurement and sensing device that measures and reports the intensity of the emitting light by a light source.

Figure 6-37 illustrates the Configure Reporting for Cluster: Illuminance Measurement, where the end device reports the Attribute: Measured Value to the coordinator.

Figure 6-38. Configure Reporting – Illuminance Measurement

- > Frame 436: 53 bytes on wire (424 bits), 51 bytes captured (408 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x0000, Src: 0x017d
- > ZigBee Network Layer Data, Dst: 0x0000, Src: 0x017d
- ZigBee Application Support Layer Data, Dst Endpt: 20, Src Endpt: 24
 - Frame Control Field: Data (0x00) Destination Endpoint: 20 Cluster: Illuminance Measurement (0x0400) Profile: Home Automation (0x0104) Source Endpoint: 24 Counter: 90
- ZigBee Cluster Library Frame, Command: Configure Reporting, Seq: 2

>	Frame Control Field: Profile-wide (0x18)								
	Sequence Number: 2								
Command: Configure Reporting (0x06)									
~	Reporting Configuration Record								
	Direction: Received (0x01)								
	Attribute: Measured Value (0x0000)								
	Timeout: 90								

The following figure illustrates the Configure Reporting for Cluster: Occupancy Sensing, where the end device reports the Attribute: Occupancy value to the coordinator.

Figure 6-39. Configure Reporting – Occupancy Sensing

- > Frame 757: 53 bytes on wire (424 bits), 51 bytes captured (408 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x0000, Src: 0x017d
- > ZigBee Network Layer Data, Dst: 0x0000, Src: 0x017d
- ✓ ZigBee Application Support Layer Data, Dst Endpt: 20, Src Endpt: 19
 - > Frame Control Field: Data (0x00)
 - Destination Endpoint: 20 Cluster: Occupancy Sensing (0x0406)
 - Profile: Home Automation (0x0104)
 - Source Endpoint: 19
 - Counter: 93
- ZigBee Cluster Library Frame, Command: Configure Reporting, Seq: 5
 - > Frame Control Field: Profile-wide (0x18)
 Sequence Number: 5
 - Command: Configure Reporting (0x06) ✓ Reporting Configuration Record Direction: Received (0x01) Attribute: Occupancy (0x0000) Timeout: 80
- Reporting Attributes A device uses the Report Attributes command to report the values of one or more of its attributes to another device. Individual clusters define about reporting which attributes and at what interval.

Figure 6-40. Report Attributes – End Device

No.	Source	Destination	Time	Protocol	Leng	Info
1068	0x017d	0×0000	294.929010	ZigBee HA	52	ZCL: Report Attributes, Seq: 7
1069			294.930010	IEEE 802.15.4	5	Ack

The following figures illustrate details about the end device reporting the Illuminance Measurement cluster's Measured Value attribute and the Occupancy Sensing cluster's Occupancy attribute respectively to the coordinator.

Figure 6-41. Report Attributes – Illuminance Measurement

- > Frame 4195: 53 bytes on wire (424 bits), 51 bytes captured (408 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x0000, Src: 0x017d
- > ZigBee Network Layer Data, Dst: 0x0000, Src: 0x017d
- ✤ ZigBee Application Support Layer Data, Dst Endpt: 20, Src Endpt: 24
 - > Frame Control Field: Data (0x00)
 Destination Endpoint: 20
 Cluster: Illuminance Measurement (0x0400)
 Profile: Home Automation (0x0104)
 Source Endpoint: 24
 - Counter: 120
- ▼ ZigBee Cluster Library Frame, Command: Report Attributes, Seq: 32
 - > Frame Control Field: Profile-wide (0x18)
 Sequence Number: 32
 Command: Report Attributes (0x0a)
 - Attribute Field

Attribute: Measured Value (0x0000) Data Type: 16-Bit Unsigned Integer (0x21) Measured Value: 255 (=0.060474 [lx])

Figure 6-42. Report Attributes – Occupancy Sensing

- > Frame 4118: 52 bytes on wire (416 bits), 50 bytes captured (400 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x0000, Src: 0x017d
- > ZigBee Network Layer Data, Dst: 0x0000, Src: 0x017d
- ZigBee Application Support Layer Data, Dst Endpt: 20, Src Endpt: 19

```
Frame Control Field: Data (0x00)
Destination Endpoint: 20
Cluster: Occupancy Sensing (0x0406)
Profile: Home Automation (0x0104)
```

Source Endpoint: 19

Counter: 119

- ZigBee Cluster Library Frame, Command: Report Attributes, Seq: 31
 - Frame Control Field: Profile-wide (0x18)

```
Sequence Number: 31
Command: Report Attributes (0x0a)
```

```
✓ Attribute Field
```

```
Attribute: Occupancy (0x0000)
```

```
Data Type: 8-Bit Bitmap (0x18)
```

```
    Occupancy: 0x00
```

```
.... ...0 = Occupied: False
```

6.4.7 Security

For more details on the security key exchange in a centralized network between the trust center and end device, refer to 6.2.5. Security.

6.5 Touchlink Commissioning

The Zigbee protocol provides special commissioning called Touchlink, which is an easy-to-use proximity mechanism for commissioning a device to a network. The Touchlink commissioning cluster provides commands to support Touchlink commissioning. The Touchlink commissioning command set has command identifiers in the range 0x00-0x3f and is transmitted using the inter-PAN transmission service. This process works by the Touchlink initiator determining the proximity of the target device (to be commissioned) and negotiating/transferring network parameters. The Touchlink commissioning process can be used to form a new network or to join a node to an existing network. Touchlink is initiated on a node called the initiator. The ZCL provides the Touchlink as a cluster. The initiator must support the Touchlink cluster as a client, and the target node must support the cluster as a server. If it is required on a node, enable Touchlink commissioning via the Zigbee base device attribute bdbCommissioningMode. For more details on Touchlink commissioning, refer to the *ZigBee Alliance Cluster Library Specification Revision 8* (075123).

For example, a ColorSceneController, which is an end device type, brings the light into the network by requesting the light to form the distributed network via Touchlink. To enable Touchlink commissioning, bring a color scene controller close to a target (light) device around like 20-30 cms range.

Figure 6-43. Touchlink Commissioning

7. Example Application Scenarios

7.1 Personal Area Network (PAN) Same Channel Co-Existence

It is possible to have multiple Zigbee networks on the same channel. The following figure illustrates that it is possible to start a second Personal Area Network (PAN) in the presence of an existing PAN.

The following figure illustrates packets #19 and #20 and provides details about the beacon frame transmission by coordinator 1 with extended PAN ID <code>0xdeeb1</code> and coordinator 2 with EPID <code>0xdeeb7</code> for router sending the <code>Beacon</code> Request as packet #18 in the same channel.

Figure 7-1. PAN Channel Co-Existence

No.	Source	Destination	Time	Protocol	Leng	Info
18		Broadcast	81.052115	IEEE 802.15.4	10	Beacon Request
19	0x0000		81.053228	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b1
20	0x0000		81.054230	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b7

7.2 End-to-End Establishment of Application Link Key

In a secure network, when two devices need to communicate on a secure link with each other, the devices must request a link key from the trust center.

The following figure illustrates link key establishment between two routers. The router $0 \times 0b6f$ requests a link key from the trust center (see packet #24) to communicate with the router 0×3779 .

Figure 7-2. Link Key Establishment Between Two Routers

No.		Source	Destination	Time	Protocol	Leng	Info
	24	0x0b6f	0x0000	19.053669	ZigBee	66	Request Key
	25			19.055663	IEEE 802.15.4	5	Ack
	26	0x0000	0x0b6f	19.061647	ZigBee	90	Transport Key
	27			19.063673	IEEE 802.15.4	5	Ack
	28	0x0b6f	0×0000	19.067631	ZigBee	65	Verify Key
	29			19.069626	IEEE 802.15.4	5	Ack
	30	0×0000	0x0b6f	19.071621	ZigBee	67	Confirm Key, SUCCESS
	31			19.072618	IEEE 802.15.4	5	Ack
	32	0x0b6f	Broadcast	19.076607	ZigBee ZDP	48	Permit Join Request
	33	0x0b6f	Broadcast	19.115503	ZigBee ZDP	48	Permit Join Request
	34		Broadcast	19.789421	IEEE 802.15.4	10	Beacon Request
	35	0x0b6f		19.792413	ZigBee	28	Beacon, Src: 0x0b6f, EPID: 00:00:00_00:00:0d:ee:b7
	36	0x0000		19.798862	ZigBee	28	Beacon, Src: 0x0000, EPID: 00:00:00_00:00:0d:ee:b7
	37	00:00:00:00:00:0d:ee:b6	0x0b6f	19.930298	IEEE 802.15.4	21	Association Request, FFD
	38			19.930874	IEEE 802.15.4	5	Ack
	39	00:00:00:00:00:0d:ee:b6	0x0b6f	20.427924	IEEE 802.15.4	18	Data Request
	40			20.428921	IEEE 802.15.4	5	Ack
	41	00:00:00:00:00:0d:ee:b5	00:00:00:00:00:0d:ee	20.431913	IEEE 802.15.4	27	Association Response, PAN: 0x3c3b Addr: 0x3779
	42			20.432910	IEEE 802.15.4	5	Ack
	43	0x0b6f	0x0000	20.435948	ZigBee	68	Update Device
	44			20.436940	IEEE 802.15.4	5	Ack
	45	0×0000	0x0b6f	20.441886	ZigBee	102	Data, Dst: 0x0b6f, Src: 0x0000
	46			20.443880	IEEE 802.15.4	5	Ack
•	47	0x0b6f	0x3779	20.447870	ZigBee	73	Transport Key
	48			20.448868	IEEE 802.15.4	5	Ack
	49	0x3779	Broadcast	20.454894	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x3779, Ext Addr: 00:00:00_00:00:0d:ee:8
	50	0x3779	Broadcast	20.490799	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x3779, Ext Addr: 00:00:00:00:00:0d:ee:
	51	0x3779	Broadcast	20.494745	ZigBee ZDP	57	Device Announcement, Nwk Addr: 0x3779, Ext Addr: 00:00:00_00:00:0d:ee:b

The trust center uses the Transport Key command to send the link key to both the routers. The link key is applied in further data exchange between the routers. Packet #47 uses this link key. The following figure illustrates the link key.

Figure 7-3. Link Key Establishment between Two Routers

- > Frame 47: 73 bytes on wire (584 bits), 71 bytes captured (568 bits) on interface \\.\pipe\Atmel_Wireshark, id 0
- > IEEE 802.15.4 Data, Dst: 0x3779, Src: 0x0b6f
- > ZigBee Network Layer Data, Dst: 0x3779, Src: 0x0b6f
- ZigBee Application Support Layer Command
 - Frame Control Field: Command (0x21)

Counter: 244

- ✤ ZigBee Security Header
 - Security Control Field: 0x30, Key Id: Key-Transport Key, Extended Nonce Frame Counter: 3 Extended Source: 00:00:00_00:00:0d:ee:b7 (00:00:00:00:00:0d:ee:b7) Message Integrity Code: ea 51 f4 03

[Key: 5a 69 67 42 65 65 41 6c 6c 69 61 6e 63 65 30 39]

[Key Label:]

- ✓ Command Frame: Transport Key
 - Command Identifier: Transport Key (0x05)
 - Key Type: Standard Network Key (0x01)

 - Sequence Number: 0
 - Extended Destination: 00:00:00_00:00:0d:ee:b6 (00:00:00:00:00:0d:ee:b6) Extended Source: 00:00:00 00:00:0d:ee:b7 (00:00:00:00:0d:ee:b7)

8. Zigbee Green Power

The following are the Green Power (GP) infrastructure device types:

- Green Power Proxy (GPP) device or Proxy device
- Green Power Sink (GPS) device or Sink device
- Green Power Combo (GPC) device or Combo device

The Green Power Device (GPD) can get commissioned directly with the sink device if the device is in the vicinity. The following are the two ways of commissioning:

- Unidirectional Commissioning
- Bidirectional Commissioning

8.1 Unidirectional Commissioning

N

- For unidirectional commissioning, the sink device is put in Commissioning mode, and GPD sends a Commissioning command with RxAfterTx-0 (see packet #74) and all device details, including the device type, security level, security key type, security key and more (see the following figure).
- The sink device verifies the device details, security key and accepts the commissioning. The sink device makes a new entry for this device in its sink table, broadcasts the GP pairing command (see packets #76 and #78), and the device announces in a broadcast the commissioning of this new GPD (see packets #77 and #79) (see the following figure). For more details, refer to the *Zigbee PRO Green Power feature specification Basic functionality set* (Version 1.1.1).

) .		Source	Destination	Time	Protocol		Length	Info				
7	73	0x5ffd	Broadcast	55.120520	IEEE	802.15.4	48	Data,	Dst:	Broadcast, S	Src:	0x5ffd
	74		Broadcast	64.787024	IEEE	802.15.4	40	Data,	Dst:	Broadcast		
7	75	Øxbeef	Broadcast	64.792848	IEEE	802.15.4	55	Data,	Dst:	Broadcast, S	Src:	0xbeef
7	76	Øxbeef	Broadcast	64.796144	IEEE	802.15.4	76	Data,	Dst:	Broadcast, S	Src:	0xbeef
	77	0x5ffd	Broadcast	64.832152	IEEE	802.15.4	55	Data,	Dst:	Broadcast, S	Src:	0x5ffd
7	78	0x5ffd	Broadcast	64.837176	IEEE	802.15.4	76	Data,	Dst:	Broadcast, S	Src:	0x5ffd
7	79	Øxbeef	Broadcast	65.431176	IEEE	802.15.4	55	Data,	Dst:	Broadcast, S	Src:	Øxbeef
8	80	Øxbeef	Broadcast	69.629432	IEEE	802.15.4	48	Data,	Dst:	Broadcast, S	Src:	Øxbeef
8	81	0x5ffd	Øxbeef	69.800312	IEEE	802.15.4	48	Data,	Dst:	Øxbeef, Src	: 0x5	ffd
8	82			69.802312	IEEE	802.15.4	3	Ack				
8	83	Øxbeef	0x5ffd	69.804584	IEEE	802.15.4	81	Data,	Dst:	0x5ffd, Src	: Øxb	eef
8	84			69.807640	IEEE	802.15.4	3	Ack				
8	85	0x5ffd	Øxbeef	69.809208	IEEE	802.15.4	43	Data,	Dst:	Oxbeef, Src	: 0x5	ffd
8	86			69.811048	IEEE	802.15.4	3	Ack				
8	87	0x5ffd	Broadcast	70.281856	IEEE	802.15.4	48	Data,	Dst:	Broadcast, S	Src:	0x5ffd

Figure 8-1. Green Power Commissioning – Unidirectional Commissioning

8.2 Bidirectional Commissioning

- For bidirectional commissioning, the sink device is put in Commissioning mode, and GPD sends a Commissioning command with RxAfterTx-1 (see packet #145) and all device details including the device type, security level, security key type, security key and more.
- The sink device verifies the details and responds with Commissioning Reply (see packets #146 and #147). Commissioning Reply can include a new security key and PAN ID if the same are requested in the commissioning packet.
- When GPD receives and processes this Commissioning Reply, it sends a Success command with a new key and PAN ID (see packet #150). On successfully decrypting packet #150 (Success) from GPD, the sink device adds a new entry in its sink table, broadcasts GP pairing and device announce for this device. For more details, refer to the *Zigbee PRO Green Power feature specification Basic functionality set* (Version 1.1.1).

Figure 8-2. Bidirectional Commissioning

No

		Source	Destination	Time	Protocol	Length	Info
	133	Øxbeef	Broadcast	106.345496	ZigBee	48	Link Status
	134		Broadcast	108.996288	ZigBee Green Power	10	Channel Request
	135	0xbeef	Broadcast	108.998000	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 2
	136	0xbeef	Broadcast	109.078672	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 2
	137		Broadcast	109.995840	ZigBee Green Power	10	Channel Request
	138		Broadcast	110.016624	ZigBee Green Power	10	Channel Configuration
	139	Øxbeef	Broadcast	110.020040	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 3
	140	Øxbeef	Broadcast	110.060984	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 3
	141	0x12345678	Broadcast	110.542648	ZigBee Green Power	41	Commissioning
	142	Øxbeef	Broadcast	110.546208	ZigBee GP	81	ZCL Green Power: GP Response, Seq: 4
	143	Øxbeef	Broadcast	110.629832	ZigBee GP	81	ZCL Green Power: GP Response, Seq: 4
	144	Øxbeef	Broadcast	110.654704	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 3
- 6	145	0x12345678	Broadcast	111.536240	ZigBee Green Power	41	Commissioning
	146	0x12345678	Broadcast	111.557800	ZigBee Green Power	39	Commissioning Reply
	147	0x12345678	Broadcast	111.559592	ZigBee Green Power	39	Commissioning Reply
1	148	0xbeef	Broadcast	111.563320	ZigBee GP	81	ZCL Green Power: GP Response, Seq: 5
1	149	Øxbeef	Broadcast	111.599312	ZigBee GP	81	ZCL Green Power: GP Response, Seq: 5
	150	0x12345678	Broadcast	111.657168	ZigBee Green Power	22	Success
- 7	151	0x5678	Broadcast	111.663944	ZigBee ZDP	55	Device Announcement, Nwk Addr: 0x5678, Ext Addr: ff:ff:ff:ff:ff:ff:ff:ff
	152	Øxbeef	Broadcast	111.667568	ZigBee GP	76	ZCL Green Power: GP Pairing, Seq: 6
	153	0x5678	Broadcast	111.739280	ZigBee ZDP	55	Device Announcement, Nwk Addr: 0x5678, Ext Addr: ff:ff:ff:ff:ff:ff:ff:ff
	154	Øxbeef	Broadcast	111.743656	ZigBee GP	76	ZCL Green Power: GP Pairing, Seq: 6
	155	0x12345678	Broadcast	111.756856	ZigBee Green Power	22	Success
	156	0x5678	Broadcast	112.306512	ZigBee ZDP	55	Device Announcement, Nwk Addr: 0x5678, Ext Addr: ff:ff:ff:ff:ff:ff:ff:ff
	157	0x289c	Øxbeef	116.776896	ZigBee GP	48	ZCL: Read Attributes, Seq: 20
	158			116.778896	IEEE 802.15.4	3	Ack
	159	Øxbeef	0x289c	116.781160	ZigBee GP	81	ZCL: Read Attributes Response, Seq: 20
	160			116.784216	IEEE 802.15.4	3	Ack
	161	0x289c	Øxbeef	116.787384	ZigBee	43	APS: Ack, Dst Endpt: 242, Src Endpt: 242
	162			116.789224	IEEE 802.15.4	3	Ack

8.3 Basic Commissioning (Channel Configuration)

- If the operational channel of the sink device is not known to the device, GPD gets the same by performing the channel configuration procedure. To get the operational channel, GPD sends the channel request to the sink device (see packets #134 and #137), and it responds with the operational channel to GPD by channel configuration command. The following figure illustrates packets #134, #137 and #138.
- At first, the GPD does not know about the operational channel and sends the channel requests in multiple channels, which are enabled in channel mask.
- GPD indicates its availability for reception in Frame Control Field (FCF) of the Channel Request command. If the Auto Commissioning of the FCF field is set to '0', RxAfterTx is enabled and vice versa.
- After sending a channel request from the same device with Auto Commissioning = 0, the GPD receives the channel configuration.
- Send packet #134 channel request packet with Auto Commissioning = 1 and RxAfterTx is disabled, hence the GPD does not receive the channel configuration. Whereas, for the channel request packet #137, the Auto Commissioning = 0 and RxAfterTx is enabled, the GPD receives the channel configuration (see packet #138).
- GPD after receiving this command changes its operational channel to the sink device's operational channel.
- When the operational channel of the sink device is not same as GPD's RX channels, the sink device changes its channel for a short duration (5s) to deliver the channel configuration packet in GPD's RX channel. When the operational channel and RX channels are the same, the sink device need not change its channel. After receiving the channel configuration, the GPD need not send any more channel requests and can continue with commissioning. For more details, refer to the *Zigbee PRO Green Power feature specification Basic functionality set* (Version 1.1.1).

Figure 8-3. Basic Commissioning (Channel Configuration)

No.		Source	Destination	Time	Protocol	Length	Info
	133	Øxbeef	Broadcast	106.345496	ZigBee	48	Link Status
[134		Broadcast	108.996288	ZigBee Green Power	10	Channel Request
	135	Øxbeef	Broadcast	108.998000	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 2
	136	Øxbeef	Broadcast	109.078672	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 2
[137		Broadcast	109.995840	ZigBee Green Power	10	Channel Request
[138		Broadcast	110.016624	ZigBee Green Power	10	Channel Configuration
	139	Øxbeef	Broadcast	110.020040	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 3
	140	Øxbeef	Broadcast	110.060984	ZigBee GP	57	ZCL Green Power: GP Response, Seq: 3
	141	0x12345678	Broadcast	110.542648	ZigBee Green Power	41	Commissioning
	142	Øxbeef	Broadcast	110.546208	ZigBee GP	81	ZCL Green Power: GP Response, Seq: 4

8.4 Data Transmission

GPD transmits the data packet to the sink device via proxy, if the proxy device is present in the network. In such cases, the proxy device sends the GP notification on behalf of the GPD device. The following figure illustrates the data transmission from the GPD via proxy.

Figure 8-4. Data Transmission from GPD via Proxy

No.	Source	Destination	Time	Protocol	Length	Info
•	1 Øxbeef	Broadcast	0.000000	ZigBee	51	Link Status
	2 0x55d1	Broadcast	2.423008	ZigBee GP	76	ZCL Green Power: GP Pairing, Seq: 1
	3 0x55d1	Broadcast	2.499440	ZigBee GP	76	ZCL Green Power: GP Pairing, Seq: 1
	4 0x55d1	Broadcast	2.502912	ZigBee GP	76	ZCL Green Power: GP Pairing, Seq: 1
	5 0x55d1	Broadcast	3.142104	ZigBee GP	76	ZCL Green Power: GP Pairing, Seq: 1
	6 0x70da	Broadcast	11.412616	ZigBee	51	Link Status
	7 0x12345678	Broadcast	12.436600	ZigBee Green Power	22	Data, GPD Src ID: 0x12345678
	8 0x5678	Broadcast	12.442520	ZigBee GP	62	ZCL Green Power: GP Notification, Seq: 1
	9 0x5678	Broadcast	12.480344	ZigBee GP	62	ZCL Green Power: GP Notification, Seq: 1
	10 0x5678	Broadcast	12.541600	ZigBee GP	62	ZCL Green Power: GP Notification, Seq: 2
	11 0x55d1	Broadcast	12.920024	ZigBee	51	Link Status
	12 0x5678	Broadcast	13.081848	ZigBee GP	62	ZCL Green Power: GP Notification, Seq: 1
	13 0x5678	Broadcast	13.182536	ZigBee GP	62	ZCL Green Power: GP Notification, Seq: 2

If the proxy device is not present in the network, the GPD sends the data to the sink device. The following figure illustrates the GPD data TX without proxy.

Figure 8-5. GPD Data TX Without Proxy

No.	Source	Destination	Time	Protocol	Length	Info
1	0x12345678	Broadcast	0.00000	ZigBee Green Power	14	Toggle

9. Document Revision History

Table 9-1. Document Revision History

Revision	Date	Section	Description
A	11/2022	Document	Initial Revision

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-1511-8

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca. IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi. MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Vieio. CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			IIK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 11-118-021-5000
Tel: 005-605-1080			1 an. 44-110-321-3020
Fax: 005-605-2079			
I AA. 30J-03J-2010			

Application Note