

Support & training

MCT8317A ZHCSQ32 -JANUARY 2023

MCT8317A 高速无传感器梯形控制集成 FET BLDC 驱动器

1 特性

- 采用集成无传感器电机控制算法的三相 BLDC 电机 驱动器
 - 无代码高速梯形控制
 - 支持高达 3kHz (电气频率)
 - 非常短的启动时间 (< 50ms)
 - 快速减速 (< 150ms)
 - 支持 120° 或 150° 调制,以改善声学性能
 - 闭环速度或功率控制
 - 用于速度或功率输入基准的可配置配置文件
 - 通过正向重新同步和反向驱动支持风力机
 - 模拟, PWM, 频率或基于 I²C 的速度输入
 - 可配置的电机启动和停止选项
 - 抗电压浪涌 (AVS) 保护可防止电机减速期间出现 直流总线电压尖峰
 - 通过 DACOUT 进行变量监控
- 4.5V 至 20V 工作电压 (绝对最大值 24V)
- 高输出电流能力:5A 峰值 ٠
- 低 MOSFET 导通状态电阻
 - T_A = 25°C 时的 R_{DS(ON)} (HS + LS): 130m Ω
- 低功耗睡眠模式
 - V_{VM} = 12V、T_A = 25℃时为7µA(最大值)
- 速度环路精度:3% 使用内部时钟,1% 使用外部时 钟参考
- 支持高达 100kHz 的 PWM 频率,以支持低电感电 机
- 不需要外部电流检测电阻器 ٠
- 内置 3.3V ±5%、20mA LDO 稳压器
- 展频和压摆率,用于降低 EMI
- 整套集成保护特性
 - 电源欠压锁定 (UVLO)
 - 电机锁定检测(5种不同类型)
 - 过流保护 (OCP)
 - 过热警告和关断 (OTW/OTS)
 - 故障条件指示引脚 (nFAULT)
 - 可选择通过 I²C 接口进行故障诊断

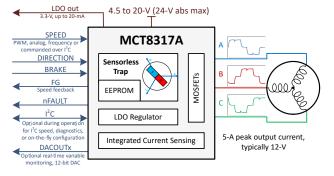
2 应用

- 无刷直流 (BLDC) 电机模块
- 机器人真空吸水电机
- 服务器风扇
- 电器风扇和泵

3 说明

MCT8317A 为需要高速运行(高达 3kHz 电气)或极 快启动速度 (< 50ms) 的客户提供了一个单芯片无代码 无传感器梯形解决方案,此解决方案适用于峰值电流高 达 5A 的 12V 无刷直流电机。MCT8317A 集成了三个 ½桥,具有 24V 的绝对最大电压和 130mΩ 的极低 R_{DS(ON)}(高侧+低侧FET)。MCT8317A还具有一个 LDO,可生成 3.3V 电压轨,并可提供高达 20mA 的电 流为外部电路供电。

无传感器梯形控制可通过寄存器设置进行多种配置,范 围从电机启动行为到闭环运行。MCT8317A 的寄存器 设置可在非易失性 EEPROM 中设置,从而允许器件在 配置后独立运行。该器件通过 PWM 输入、模拟电压、 可变频率方波或 I²C 命令接收速度命令。MCT8317A, 集成多种保护特性,旨在出现故障事件时保护该器件、 电机和系统。


器件信息(1)

器件型号	封装	封装尺寸(标称值)						
MCT8317A0I	WQFN (36)	5.00mm × 4.00mm						

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1) 录。

参考文档:

请参阅 MCT8317A EVM GUI

简化版原理图

本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。

Table of Contents

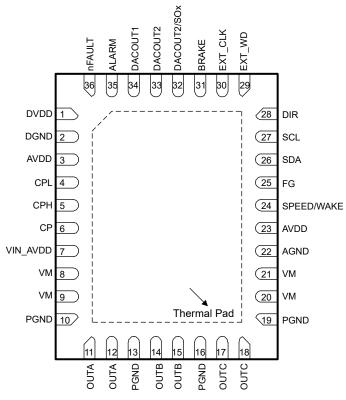
1 特性1
2 应用1
3 说明1
4 Revision History2
5 Device Comparison Table
6 Pin Configuration and Functions4
7 Specifications
7.1 Absolute Maximum Ratings6
7.2 ESD Ratings6
7.3 Recommended Operating Conditions6
7.4 热性能信息7
7.5 Electrical Characteristics7
7.6 Characteristics of the SDA and SCL bus for
Standard and Fast mode14
8 Detailed Description17
8.1 Overview17
8.2 Functional Block Diagram18
8.3 Feature Description19
8.4 Device Functional Modes66
8.5 External Interface66

8.6 EEPROM access and I ² C interface	<mark>68</mark>
8.7 EEPROM (Non-Volatile) Register Map	74
8.8 RAM (Volatile) Register Map	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Applications	
10 Power Supply Recommendations	
10.1 Bulk Capacitance	
11 Layout	
11.1 Layout Guidelines	154
11.2 Layout Example	
11.3 Thermal Considerations	156
12 Device and Documentation Support	157
12.1 支持资源	157
12.2 Trademarks	
12.3 静电放电警告	
12.4 术语表	
13 Mechanical, Packaging, and Orderable	
Information	157
13.1 Tape and Reel Information	

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

DATE REVISION		NOTES
January 2023	*	Initial Release


5 Device Comparison Table

Parameter	PMCT8317A0I	MCT8317A0I
Over Temperature Warning	Not EEPROM configurable; always enabled	EEPROM configurable
Over Temperature Warning Response	ng Response FETs are in Hi-Z, reported on nFAULT and FETs are Active, reported on nFAULT and GATE_DRIVER_FAULT_STATUS bits GATE_DRIVER_FA	
Over Voltage Fault Mode	One mode: FETs are in Hi-Z, reported on nFAULT and GATE_DRIVER_FAULT_STATUS bits when VM > V _{OVP (rising)}	Two modes configurable through EEPROM : 1. FETs are in Hi-Z, reported on nFAULT and GATE_DRIVER_FAULT_STATUS bits when VM > V _{OVP (rising)} 2. 1. FETs are Active, reported on nFAULT and GATE_DRIVER_FAULT_STATUS bits when VM > V _{OVP (rising)}
Brake during ISD	Time based brake	Time or current based brake - EEPROM configurable option

表 5-1. Differences between PMCT8317 and MCT8317

6 Pin Configuration and Functions

图 6-1. MCT8317A 36-pin WQFN with Exposed Thermal Pad Top View

表 6-1. Pin Functions

PIN	40-pin Package	TYPE ⁽¹⁾	DESCRIPTION		
NAME	MCT8317A				
AGND	22	GND	Device analog ground.		
AVDD	23	PWR O	3.3-V internal regulator output. Connect a X5R or X7R, 2.2- μ F (no load) or 4.7- μ F (up to 20 mA load), 6.3-V ceramic capacitor between the AVDD1 and AGND pins. This regulator can source up to 20 mA externally.		
BRAKE	31	I	High → Brake the motor Low → Normal motor operation If BRAKE pin is not used, connect to AGND directly.		
			If BRAKE pin is used to brake the motor, use an external 100-k Ω pull-down resistor (to AGND).		
СР	6	PWR	Charge pump output. Connect a X5R or X7R, 1- μ F, 16-V ceramic capacitor between the CP and VM pins.		
CPH	5	PWR	Charge pump switching node. Connect a X5R or X7R, 100-nF, ceramic capacitor between the		
CPL	4	PWR	CPH and CPL pins. TI recommends a capacitor voltage rating at least twice the normal operating voltage of the device.		
DACOUT2/S OX	32	0	Multipurpose pin: DAC output when configured as DACOUT2 CSA output configured as SOX		
DACOUT1	34	0	DAC output DACOUT1		
DACOUT2 33 O DAC output DACOUT2		DAC output DACOUT2			
DGND 2 GND Device digital ground. Refer Layout Guidelines for conne		Device digital ground. Refer Layout Guidelines for connections recommendation.			

表 6-1. Pin Functions (continued)

PIN	40-pin Package	TYPE ⁽¹⁾	DESCRIPTION		
NAME	MCT8317A				
DIR	28	I	Direction of motor spinning; When low, phase driving sequence is OUT A \rightarrow OUT C \rightarrow OUT B When high, phase driving sequence is OUT A \rightarrow OUT B \rightarrow OUT C If DIR pin is not used, connect to AGND or AVDD directly (depending on phase driving sequence needed). If DIR pin is used for changing motor spin direction, use an external 100-k Ω pull-down resistor (to AGND).		
DVDD	1	PWR	1.5-V internal regulator output. Connect a X5R or X7R, 2.2-µF, 6.3-V ceramic capacitor between the DVDD and DGND pins.		
EXT_CLK	30	I	External clock reference input in external clock reference mode.		
EXT_WD	29	I	External watchdog input.		
FG	25	0	Motor speed indicator output. Open-drain output requires an external pull-up resistor to 1.8-V to 5-V.		
ILIMIT - I Connect resistor to AGND for parameter configuration.		Connect resistor to AGND for parameter configuration.			
nFAULT	36	0	Fault indicator. Pulled logic-low with fault condition; Open-drain output requires an external pull-up resistor to 1.8-V to 5-V.		
OUTA	11,12	PWR O	Half-bridge output A		
OUTB	14, 15	PWR O	Half-bridge output B		
OUTC	17, 18	PWR O	Half-bridge output C		
PGND	10, 13, 16, 19	GND	Device power ground.		
SCL	27	I	I ² C clock input		
SDA	26	I/O	I ² C data line		
SPEED/ WAKE	24	Ι	Device speed input; supports analog, frequency or PWM speed input. The speed pin input can be configured through SPD_CTRL_MODE.		
VIN_AVDD	7	PWR I	Input supply for AVDD LDO		
VM	8, 9, 20, 21	PWR IDevice and motor power supply. Connect to motor supply voltage; bypass to PGND with a 0.1-μF capacitor plus one bulk capacitor. TI recommends a capacitor voltage rating at least twice the normal operating voltage of the device.			
Thermal pad		GND	Must be connected to AGND		

(1) I = input, O = output, GND = ground pin, PWR = power, NC = no connect

7 Specifications

7.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Power supply pin voltage (VM, VIN_AVDD)	- 0.3	24	V
Power supply voltage ramp during power up (VM)		4	V/µs
Voltage difference between ground pins (DGND,PGND, AGND)	- 0.3	0.3	V
Charge pump voltage (CP)	- 0.3	V _M + 6	V
Analog regulator pin voltage (AVDD)	- 0.3	4	V
Digital regulator pin voltage (DVDD)	- 0.3	2	V
Logic pin input voltage (DIR, SPEED, BRAKE, SDA, SCL)	- 0.3	6	V
Open drain pin output voltage (nFAULT ,FG)	- 0.3	6	V
Output pin voltage (OUTA, OUTB, OUTC)	- 1	V _M + 1 ⁽²⁾	V
Ambient temperature, T _A	- 40	125	°C
Junction temperature, T _J	- 40	150	°C
Storage tempertaure, T _{stg}	- 65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime

(2) Maximum voltage supported on OUTx pin is 24V

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	V
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{VM}	Power supply voltage	V _{VM} , V _{VIN_AVDD}	4.5	12	20	V
I _{оит} (1)	(1) Peak output winding current	$V_{VM} \ge 6$ V, OUTA, OUTB, OUTC			5	А
OUT		4.5 V \leqslant V_{VM} < 6 V, OUTA, OUTB, OUTC			3	А
V _{IN_LOGIC}	Logic input voltage	SPEED, SDA, SCL	- 0.3		5.5	V
V _{OD}	Open drain pullup voltage	nFAULT, FG	- 0.3		5.5	V
I _{OD}	Open drain output current capability	nFAULT, FG			5	mA
T _A	Operating ambient temperature		- 40		125	°C
TJ	Operating Junction temperature		- 40		150	°C

(1) Power dissipation and thermal limits must be observed

7.4 热性能信息

	R + JC(top) 结至外壳(顶部)热阻 22.2 °C/W R + JB 结至电路板热阻 14.7 °C/W Y JT 结至可部特征参数 3.4 °C/W Y JB 结至电路板特征参数 14.7 °C/W		
		36	
R _{0 JA}	结至环境热阻 (JEDEC 4 层 PCB , 6 个散热孔)	36.6	°C/W
R _{0 JC(top)}	结至外壳(顶部)热阻	22.2	°C/W
R _{θ JB}	结至电路板热阻	14.7	°C/W
ΨJT	结至项部特征参数	3.4	°C/W
Ψ_{JB}	结至电路板特征参数	14.7	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻	4.5	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用报告。

7.5 Electrical Characteristics

 $T_J = -40^{\circ}$ C to +150°C, $V_{VM} = 4.5$ to 20 V (unless otherwise noted). Typical limits apply for $T_A = 25^{\circ}$ C, $V_{VM} = 12$ V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SI	JPPLIES	·			· · ·	
1	VM sleep mode current	$V_{SPEED} \leqslant V_{IL}$ (Max), T_A = 25 °C		5	7	μA
I _{VMQ}	VM sleep mode current	$V_{SPEED} \leqslant V_{IL}$ (Max) T _A = 125 °C		15	20	μA
I _{VMS}	VM standby mode current	$\label{eq:spectral_states} \begin{array}{l} \mbox{[DEV_MODE = 1b (Sleep Mode) with} \\ V_{SPEED} > V_{IH}(Min), I^2C \mbox{ Speed command} \\ = 0\mbox{] or [DEV_MODE = 0b (Standby \\ Mode) with \mbox{ V}_{SPEED} \leqslant V_{IL} (Max) \mbox{ or } I^2C \\ \mbox{ speed command = 0]} \end{array}$		25	28	mA
1	VM operating mode current	$V_{SPEED} > V_{IH}$ (Min) in PWM mode or non-zero speed command in I ² C mode, Output PWM Freq = 25 kHz, T _A = 25 °C, No Motor Connected		25	30	mA
I _{VM}	VM operating mode current	V _{SPEED} > V _{IH} (Min) in PWM mode or non-zero speed command in I ² C mode, Output PWM Freq = 25 kHz, No Motor Connected		25	30	mA
Vavdd	Analog regulator voltage	$\begin{array}{l} V_{VM} \geqslant 6 \text{ V}, V_{VIN_AVDD} \geqslant 6 \text{ V}, 0 \text{ mA} \leqslant \\ I_{AVDD} \leqslant 20 \text{ mA}, \text{including voltage, temp,} \\ \text{load and line transients} \end{array}$	3.15	3.3	3.45	V
♥ AVDD		$\begin{array}{l} 4.5 \text{ V} \leqslant \text{V}_{\text{VM}} < 6 \text{ V}, 4.5 \text{ V} \leqslant \text{V}_{\text{VIN_AVDD}} < \\ 6 \text{ V}, 0 \text{ mA} \leqslant \text{I}_{\text{AVDD}} \leqslant 20 \text{ mA}, \text{ including} \\ \text{voltage, temp, load and line transients} \end{array}$	3.15	3.3	3.45	V
I _{AVDD}	Analog regulator external load	$\begin{array}{c} 4.5 \ V \leqslant V_{VM} < 6 \ V, \ 4.5 \ V \leqslant V_{VIN_AVDD} < \\ 6 \ V \end{array}$			20	mA
	Analog regulator external load	$V_{VM} \ge 6V, V_{VIN_AVDD} \ge 6V$			20	mA
I _{AVDD_LIM}	Analog regulator current limit	$V_{AVDD} \ge 2.7V$, soft short to GND	100	125	150	mA
<u> </u>		External load I _{AVDD} = 0 mA	0.5	2.2	7.05	uF
C _{AVDD}	Capacitance for AVDD	External load 0mA \leq I _{AVDD} \leq 20 mA	2.35	4.7	7.05	uF
V _{DVDD}	Digital regulator voltage	No External load, including voltage, temp, load and line transients	1.45	1.55	1.65	V
I _{DVDD}	External digital regulator load				No Load	mA
C _{DVDD}	Capacitance for DVDD	External load I _{DVDD} = 0 mA	0.6	2.2	7.05	uF
V _{CP}	Charge pump regulator voltage	4.2 V \leqslant V_{VM} < 6 V, CP with respect to VM	3	5	5.5	V
		$V_{VM} \ge 6V$, CP with respect to VM	4.5	5	5.5	V
f _{CP}	Charge pump switching frequency			400		kHz

MCT8317A ZHCSQ32 - JANUARY 2023

ÈXAS NSTRUMENTS
www.ti.com.cn

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DRIVER OL	JTPUTS				I	
Р	Total MOSFET on resistance (High-side	$V_{VM} \ge 6 \text{ V}, \text{ I}_{OUT} = 1 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$		130	157	mΩ
R _{DS(ON)}	+ Low-side)	$V_{VM} \ge 6 \text{ V}, \text{ I}_{OUT} = 1 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		180	221.5	mΩ
D	Total MOSFET on resistance (High-side	$4.5~V \leqslant V_{VM}$ < 6 V, I_{OUT} = 1 A, T_{J} = 25°C		155	210	mΩ
R _{DS(ON)}	+ Low-side)	$4.5 \text{ V} \leqslant \text{V}_{\text{VM}} < 6 \text{ V}, \text{I}_{\text{OUT}} = 1 \text{ A}, \text{T}_{\text{J}} = 125^{\circ}\text{C}$		225	290	mΩ
		V _{VM} = 12V, SLEW_RATE = 00b	13.75	25	36.25	V/µs
	Phase pin slew rate switching low to high (Rising from 20 % to 80 % of VM)	V _{VM} = 12V, SLEW_RATE = 01b	27.5	50	72.5	V/µs
SR_RISE		V _{VM} = 12V, SLEW_RATE = 10b	62.5	125	187.5	V/µs
		V _{VM} = 12V, SLEW_RATE = 11b	80	200	320	V/µs
	Phase pin slew rate switching high to low (Falling from 80 % to 20 % of VM)	V _{VM} = 12V, SLEW_RATE = 00b	13.75	25	36.25	V/µs
		V _{VM} = 12V, SLEW_RATE = 01b	27.5	50	72.5	V/µs
SR_FALL		V _{VM} = 12V, SLEW_RATE = 10b	62.5	125	187.5	V/µs
		V _{VM} = 12V, SLEW_RATE = 11b	80	200	320	V/µs
I _{LEAK}	Leakage current OUTx	V _{VM} = V _{OUTx} = 20 V, Standby State		0.7	2	mA
I _{LEAK}	Leakage current OUTx	V _{OUTx} = 0 V, Standby State	-50	-10		μA
		V _{VM} = 12V, SLEW_RATE = 00b		575	1500	ns
+	Driver output dead time (high to low / low	V _{VM} = 12V, SLEW_RATE = 01b		325	1400	ns
t _{DRV_DEAD}	to high)	V _{VM} = 12V, SLEW_RATE = 10b		250	1300	ns
		V _{VM} = 12V, SLEW_RATE = 11b		250	1200	ns

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0001b,		50	55	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0010b,		100	110	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0011b,		150	165	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0100b,		200	220	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0101b,		250	275	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0110b,		300	330	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 0111b,		350	385	ns
DIG_DEAD_TI /IE	Gate input signal dead time from digital controller (high to low / low to high)	V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1000b,		400	440	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1001b,		450	495	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1010b,		500	550	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1011b,		600	660	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1100b,		700	770	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1101b,		800	880	ns
		V _{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1110b,		900	990	ns
		V_{VM} = 12 V; HS driver ON to LS driver OFF; DIG_DEAD_TIME = 1111b,		1000	1100	ns
SLEEP MOI	DE					
/ _{EN_SL}	Analog voltage to enter sleep mode	SPD_CTRL_MODE = 00b (analog mode)			40	mV
/ _{EX_SL}	Analog voltage to exit sleep mode	SPD_CTRL_MODE = 00b (analog mode)	2.2			V
DET_ANA	Time needed to detect wake up signal on SPEED pin	SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} > V _{EX_SL}	0.5	1	1.5	μ s
WAKE	Wakeup time from sleep mode	V _{SPEED} > V _{EX_SL} to DVDD voltage available, SPD_CTRL_MODE = 01b (PWM mode)		3	5	ms
EX_SL_DR_A IA	Time taken to drive motor after exiting from sleep mode	SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} > V _{EN_SL} , ISD detection disabled			20	ms
DET_PWM	Time needed to detect wake up signal on SPEED pin	SPD_CTRL_MODE = 01b (PWM mode) V _{SPEED} > V _{IH}	0.5	1	1.5	μ s
	Wakeup time from sleep mode	$V_{SPEED} > V_{IH}$ to DVDD voltage available and release nFault, SPD_CTRL_MODE		3	5	ms
WAKE_PWM		= 01b (PWM mode)				

TEXAS	
Instruments	
www.ti.com.cn	

MCT8317A
ZHCSQ32 - JANUARY 2023

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	n	SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} < V _{EN_SL} , SLEEP_TIME = 00b	0.035	0.05	0.065	ms
	_	SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} < V _{EN_SL} , SLEEP_TIME = 01b	0.14	0.2	0.26	ms
^I DET_SL_ANA	Time needed to detect sleep command	SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} < V _{EN_SL} , SLEEP_TIME = 10b	14	20	26	ms
		SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} < V _{EN_SL} , SLEEP_TIME = 11b	140 200	260	ms	
		SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 00b	0.035	0.05	0.065	ms
	Time needed to detect aloon command	SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 01b	0.14	0.2	0.26	ms
^t det_sl_pwm	Time needed to detect sleep command	SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 10b	14	20	26	ms
		SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 11b	140	200	260	ms
EN_SL	Time needed to stop driving motor after detecting sleep command	V _{SPEED} < V _{EN_SL} (analog mode) or V _{SPEED} < V _{IL} (PWM mode)		1	2	ms

$T_1 = -40^{\circ}$ C to +150°C, $V_{VM} = 4.5$ to 20 V	(unless otherwise noted). Typical limits apply for $T_A = 25^{\circ}C$, $V_{VM} = 12 V$
· J · · · · · · · · · · · · · · · · · ·	

-j - 0 C	$v_{\rm M} = $		101 1 _A - 20	, <u>v</u> vm	- 12 V	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STANDBY N	NODE					
t _{ex_sb_dr_a} Na	Time taken to drive motor after exiting standby mode	$\label{eq:spd_ctrack} \begin{array}{l} \text{SPD}_{\text{CTRL}} \mbox{MODE} = 00b \mbox{ (analog} \\ \mbox{mode}) \\ \mbox{V}_{\text{SPEED}} > \mbox{V}_{\text{EN}_{\text{SB}}}, \mbox{ ISD detection disabled} \end{array}$			6	ms
t _{EX_SB_DR_P} WM	Time taken to drive motor after exiting standby mode	$\label{eq:spd_ctrkl_mode} \begin{split} & \text{SPD_CTRL_MODE} = 01b \ (\text{PWM mode}) \\ & \text{V}_{\text{SPEED}} > \text{V}_{\text{IH}}, \ \text{ISD detection disabled} \end{split}$			6	ms
t _{DET_SB_ANA}	Time needed to detect standby mode	SPD_CTRL_MODE = 00b (analog mode) V _{SPEED} < V _{EN_SB}	0.5	1	2	ms
		SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 00b	0.035	0.05	0.065	ms
t	Time needed to detect standby	SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 01b	0.14	0.2	0.26	ms
^T EN_SB_PWM	command	SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 10b	14	20	26	ms
		SPD_CTRL_MODE = 01b (PWM mode) or 11b (Freq mode) V _{SPEED} < V _{IL} , SLEEP_TIME = 11b	140	200	260	ms
t _{EN_SB_DIG}	Time needed to detect standby mode	SPD_CTRL_MODE = 10b (I2C mode), SPEED_CMD = 0		1	2	ms
t _{EN_SB}	Time needed to stop driving motor after detecting standby command	V _{SPEED} < V _{EN_SL} (analog mode) or V _{SPEED} < V _{DIG_IL} (PWM mode) or SPEED_CMD = 0 (I2C mode)		1	2	ms
LOGIC-LEV	EL INPUTS (DIR, SPEED)		1			
V _{IL}	Input logic low voltage	AVDD = 3 to 3.6 V			0.25*AV DD	V
V _{IH}	Input logic high voltage	AVDD = 3 to 3.6 V	0.65*AV DD			V
V _{HYS}	Input hysteresis		110		400	mV
IIL	Input logic low current	AVDD = 3 to 3.6 V	0		0.1	μA
	Input logic high ourrent	AVDD < V _{PIN}		-5		μA
IIH	Input logic high current	AVDD≥V _{PIN}	-0.1		0	μA
R _{PD_SPEED}	Input pulldown resistance	SPEED pin To GND	900	1000	1100	kΩ
OPEN-DRAI	N OUTPUTS (nFAULT, FG, etc)		1		I	
V _{OL}	Output logic low voltage	I _{OD} = -5 mA			0.4	V
I _{OZ}	Output logic high current	V _{OD} = 3.3 V	0		0.5	μA
I ² C Serial In	terface					
V _{I2C_L}	Low-level input voltage		-0.5		0.3*AVD D	mV
V _{I2C_H}	High-level input voltage		0.7*AVD D			mV
V _{I2C_HYS}	Hysteresis		0.05*AV DD			mV
V _{I2C_OL}	Low-level output voltage	open-drain at 2 mA sink current	0		0.4	V
I _{I2C_OL}	Low-level output current	V _{I2C_OL} = 0.6V			6	mA
I _{I2C_IL}	Input current on SDA and SCL	T _J = -40 to +150 ℃	-10		10	μA
C _i	Capacitance for SDA and SCL				10	pF
	Output fall time from V _{I2C H} (min) to	Standard Mode			250	ns
t _{of}						

Copyright © 2023 Texas Instruments Incorporated

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SP}	Pulse width of spikes that must be suppressed by the input filter	Fast Mode	0		50	ns
SPEED INP	UT - PWM MODE		I		·	
f _{PWM}	PWM input frequency		0.01		100	kHz
Res _{PWM}	PWM input resolution	f _{PWM} = 0.01 to 0.35 kHz	11	12	13	bits
Res _{PWM}	PWM input resolution	f _{PWM} = 0.350 to 2 kHz	12	13	14	bits
Res _{PWM}	PWM input resolution	f _{PWM} = 2 to 3.5 kHz	11	14	15	bits
Res _{PWM}	PWM input resolution	f _{PWM} = 3.5 to 7 kHz	13	13.5	14	bits
		f _{PWM} = 7 to 14 kHz	12	12.5	13	bits
Res _{PWM}	PWM input resolution	f _{PWM} = 14 to 29.2 kHz	11	11.5	12	bits
		f _{PWM} = 29.3 to 58.5 kHz	10	10.5	11	bits
Res _{PWM}	PWM input resolution	f _{PWM} = 60 to 100 kHz	8	9	10	bits
SPEED INP	UT - ANALOG MODE		1		I	
V _{ANA_FS}	Analog full-speed voltage		2.95	3	3.05	V
V _{ANA_RES}	Analog voltage resolution			732		μV
	UT - FREQUENCY MODE	1	I		I	
fpwm freq	PWM input frequency range	Duty cycle = 50%	3		32767	Hz

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PROTECTIO	ON CIRCUITS					
.,		VM rising	21	22	23	V
V _{OVP}	Supply overvoltage protection (OVP)	VM falling	20	21	22	V
V _{OVP_HYS}	Supply overvoltage protection hysteresis	Falling to rising threshold	900	1000	1100	mV
t _{ovp}	Supply overvoltage protection deglitch time		3	5	7	μs
		VM rising	4.25	4.4	4.61	V
V _{UVLO}	Supply undervoltage lockout (UVLO)	VM falling	4.1	4.2	4.35	V
V _{UVLO_HYS}	Supply undervoltage lockout hysteresis	Rising to falling threshold	140	210	350	mV
t _{UVLO}	Supply undervoltage lockout deglitch time		3	5	7	μs
V _{VIN_AVDD_U}	AVDD supply input undervoltage lockout	VIN_AVDD rising	4.25	4.4	4.61	V
v	(VIN_AVDD_UV)	VIN_AVDD falling	4.1	4.2	4.35	V
V _{VIN_AVDD_U} v_hys	Supply undervoltage lockout hysteresis	Rising to falling threshold	140	210	350	mV
	Charge pump undervoltage lockout	Supply rising	2.64	2.8	2.95	V
V _{CPUV}	(above VM)	Supply falling	2.4	2.6	2.7	V
V _{CPUV_HYS}	Charge pump undervoltage lockout hysteresis	Rising to falling threshold	180	210	245	mV
t _{CPUV}	Charge pump undervoltage lockout deglitch time		3	5	7	μs
		Supply rising	2.7	2.8	2.9	V
V _{AVDD_UV}	Analog regulator undervoltage lockout	Supply falling	2.6	2.7	2.8	V
V _{AVDD_UV_H} ys	Analog regulator undervoltage lockout hysteresis	Rising to falling threshold	80	100	150	mV
I _{OCP}	Overcurrent protection trip point		6	9.5	12	А
		OCP_TBLANK = 00b	0.15	0.3	0.45	μs
+ (1)	Overeurrent protection blanking time	OCP_TBLANK = 01b	0.45	0.7	0.85	μs
t _{BLANK} ⁽¹⁾	Overcurrent protection blanking time	OCP_TBLANK = 10b	0.7	1	1.25	μs
		OCP_TBLANK = 10b	0.9	1.2	1.5	μs
		OCP_DEG = 00b	0.1	0.3	0.45	μs
t _{OCP} ⁽¹⁾	Overcurrent protection deglitch time	OCP_DEG = 01b	0.35	0.6	0.85	μs
UCP ` '		OCP_DEG = 10b	0.6	0.9	1.25	μs
		OCP_DEG = 11b	0.8	1.2	1.5	μs
		TRETRY = 00b	350	500	700	ms
	Fault retry time	TRETRY = 01b	750	1000	1300	ms
RETRY		TRETRY = 10b	1650	2000	2450	ms
		TRETRY = 11b	4350	5000	5850	ms
Г _{ОТW}	Thermal warning temperature	Die temperature (T _J) Rising	110	125	140	°C
T _{OTW_HYS}	Thermal warning hysteresis	Die temperature (T _J)	15	20	25	°C
T _{OTS}	Thermal shutdown temperature	Die temperature (T _J) Rising	145	160	175	°C
T _{OTS_HYS}	Thermal shutdown hysteresis	Die temperature (T _J)	15	20	25	°C

(1) $(t_{OCP} + t_{BLANK})$ must not exceed 2.2 µs

7.6 Characteristics of the SDA and SCL bus for Standard and Fast mode

	PARAMETER	TEST CONDITIONS	MIN	NOM MAX	UNIT
Standar	d-mode			L	
f _{SCL}	SCL clock frequency		0	100	kHz
t _{HD_STA}	Hold time (repeated) START condition	After this period, the first clock pulse is generated SCL fall (Tf 70% to 30% = 6.5ns-106.5ns), SDA fall (Tf 70% to 30% = 6.5ns-106.5ns)	4		μs
t _{LOW}	Low period of the SCL clock		4.7		μs
t _{HIGH}	High period of the SCL clock		4		μs
t _{su_sta}	Set-up time for a repeated START condition	SCL rise (Tr 30% to 70% = 600ns-1000ns), SDA fall (Tf 70% to 30% = 6.5ns-106.5ns)	4.7		μs
	I2C Start Data Hold Time ⁽¹⁾	SCL fall (Tf 70% to 30% = 6.5ns-106.5ns), SDA rise (Tr 30% to 70%= 600ns-1000ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	0 (2)	(3)	μs
thd_dat	I2C Input Data Transfer Hold Time ⁽¹⁾	SCL fall (Tf 70% to 30% = 6.5ns-106.5ns), SDA rise (Tr 30% to 70%= 600ns-1000ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	0 (2)	(3)	μs
t _{su_dat}	I2C False Start/Stop Data Set-up Time	SCL rise (Tr 30% to 70% = 600ns-1000ns), SDA rise (Tr 30% to 70%= 600ns-1000ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	250		ns
	I2C Input Data Transfer Set-up Time	SCL rise (Tr 30% to 70% = 600ns-1000ns), SDA rise (Tr 30% to 70%= 600ns-1000ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	250		ns
t _r	Rise time for both SDA and SCL signals			1000	ns
t _f	Fall time of both SDA and SCL signals ⁽²⁾ (5) (6) (7)			300	ns
t _{su_sто}	Set-up time for STOP condition	SCL rise (Tr 30% to 70% = 600ns-1000ns), SDA rise (Tr 30% to 70% = 600ns-1000ns)	4		μs
t _{BUF}	Bus free time between STOP and START condition		4.7		μs
Cb	Capacitive load for each bus line ⁽⁸⁾			400	pF
VD_DAT	Data valid time ⁽⁹⁾			3.45 ⁽³⁾	μs
t _{VD_ACK}	Data valid acknowledge time ⁽¹⁰⁾			3.45 ⁽³⁾	μs
V _{nL}	Noise margin at the Low level	For each connected device (including hysteresis)	0.12		V
V _{nh}	Noise margin at the High level	For each connected device (including hysteresis)	0.24		V
Fast-mo	de	· · · · · · · · · · · · · · · · · · ·			
: SCL	SCL clock frequency		0	400	kHz

	PARAMETER	TEST CONDITIONS	MIN	NOM MAX	UNIT
t _{HD_STA}	Hold time (repeated) START condition	After this period, the first clock pulse is generated SCL fall (Tf 70% to 30% = 6.5ns-106.5ns), SDA fall (Tf 70% to 30% = 6.5ns-106.5ns)	0.6		μs
t _{LOW}	Low period of the SCL clock		1.3		μs
t _{HIGH}	High period of the SCL clock		0.6		μs
t _{SU_STA}	Set-up time for a repeated START condition	SCL rise (Tr 30% to 70% = 180ns-300ns), SDA fall (Tf 70% to 30% = 6.5ns-106.5ns)	0.6		μs
t _{HD_DAT}	I2C Start Data Hold Time ⁽¹⁾	SCL fall (Tf 70% to 30% = 6.5ns-106.5ns), SDA rise (Tr 30% to 70% = 180ns-300ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	0 (2)	(3)	μs
	I2C Input Data Transfer Hold Time ⁽¹⁾	SCL fall (Tf 70% to 30% = 6.5ns-106.5ns), SDA rise (Tr 30% to 70% = 180ns-300ns) or fall (Tf 70% to 30% =6.5ns-106.5ns)	0 (2)	(3)	μs
t _{su_dat}	I2C False Start/Stop Data Set-up Time	SCL rise (Tr 30% to 70% = 180ns-300ns), SDA rise (Tr 30% to 70% = 180ns-300ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	100 (4)		ns
	I2C Input Data Transfer Set-up Time	SCL rise (Tr 30% to 70% = 180ns-300ns), SDA rise (Tr 30% to 70% = 180ns-300ns) or fall (Tf 70% to 30% = 6.5ns-106.5ns)	100 (4)		ns
t _r	Rise time for both SDA and SCL signals		20	300	ns
t _f	Fall time of both SDA and SCL signals ⁽²⁾ (5) (6) (7)		4.36	300	ns
t _{su_sто}	Set-up time for STOP condition	SCL rise (Tr 30% to 70% = 180ns-300ns), SDA rise (Tr 30% to 70% = 180ns-300ns)	0.6		μs
t _{BUF}	Bus free time between STOP and START condition		1.3		μs
C _b	Capacitive load for each bus line ⁽⁸⁾			150	pF
t _{VD_DAT}	Data valid time ⁽⁹⁾			0.9 ⁽³⁾	μs
t _{VD_ACK}	Data valid acknowledge time ⁽¹⁰⁾			0.9 (3)	μs
V _{nL}	Noise margin at the Low level	No chattering at output for noise at VOL	0.12		V
V _{nh}	Noise margin at the High level	No chattering at output for noise at VOH	0.24		V

at $T_{\rm e} = -25^{\circ}$ C to +125°C. V₁₀₀ = 6 to 18 V (unless otherwise noted). Typical limits apply for $T_{\rm e} = 25^{\circ}$ C. V₁₀₀ = 12 V

t_{HD DAT} is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge. (1)

A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to (2) bridge the undefined region of the falling edge of SCL.

The maximum t_{HD_DAT} could be 3.45 us and .9 us for Standard-mode and Fast-mode, but must be less than the maximum of t_{VD_DAT} or (3) t_{VD ACK} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretched the SCL, the data must be valid by the set-up time before it releases the clock.

A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement t_{SU DAT} 250 ns must then be met. (4) This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period if the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU_DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also, the acknowledge timing must meet this set-up time. If mixed with Hs-mode devices, faster fall times according to Table 10 are allowed. (5)

(6) The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.

In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should (7) allow for this when considering bus timing.

(8) The maximum bus capacitance allowable may vary from the value depending on the actual operating voltage and frequency of the application.

(9) t_{VD_DAT} = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).

(10) t_{VD_ACK} = time for Acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).

8 Detailed Description

8.1 Overview

The MCT8317A provides a single-chip, code-free sensorless trapezoidal solution for customers requiring high speed operation (up to 3 kHz electrical speed) or very fast start-up time (< 50ms) for 12-V brushless-DC motors requiring up to 5-A peak phase currents.

The MCT8317A integrates three 1/2-H bridges with 24-V absolute maximum capability and a very low $R_{DS(ON)}$ of 130-m Ω (high-side + low-side) to enable high power drive capability. Current is sensed using an integrated current sensing circuit which eliminates the need for external sense resistors. An integrated LDO generates the necessary voltage rail for the device that can also be used to power external circuits sourcing up to 20 mA.

Sensorless trapezoidal control is highly configurable through register settings ranging from motor start-up behavior to closed loop operation. Register settings can be stored in non-volatile EEPROM, which allows the device to operate stand-alone once it has been configured. MCT8317A allows for a high level of monitoring; any variable in the algorithm can be displayed and observed as an analog output via two 12-bit DACs. This feature provides an effective method to tune speed loops as well as motor acceleration. The device receives a speed command through a PWM input, analog voltage, frequency input or I²C command.

In-built protection features include power-supply under voltage lockout (UVLO), charge-pump under voltage lockout (CPUV), over current protection (OCP), AVDD under voltage lockout (AVDD_UV), motor lock detection and over temperature warning and shutdown (OTW and OTS). Fault events are indicated by the nFAULT pin with detailed fault information available in the status registers.

The MCT8317A device is available in a 0.4-mm pin pitch, WQFN surface-mount package. The WQFN package size is 5-mm × 4-mm with a height of 0.8-mm.

8.2 Functional Block Diagram

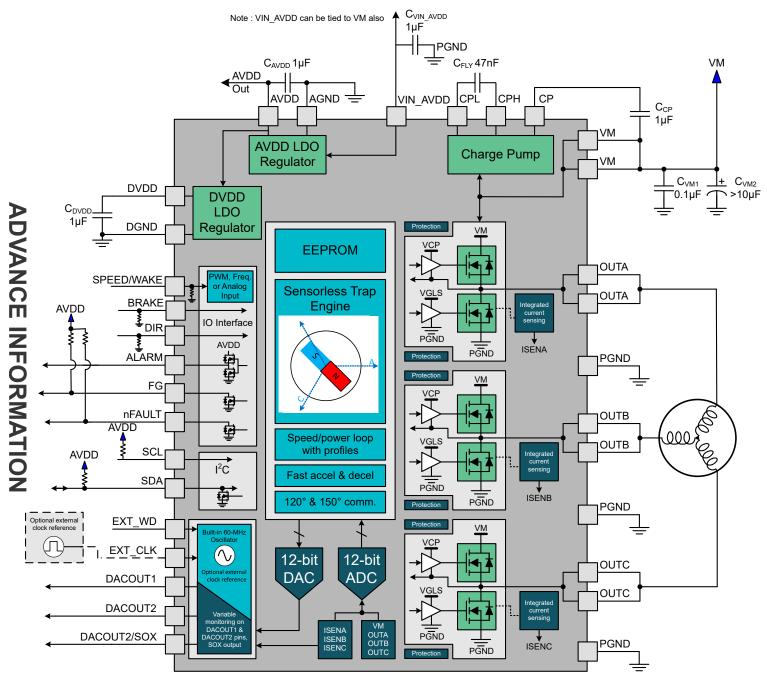


图 8-1. MCT8317A Functional Block Diagram

8.3 Feature Description

MCT8317A ZHCSQ32 - JANUARY 2023

8.3.1 Output Stage

The MCT8317A consists of an integrated 130-m Ω (high-side + low-side) NMOS FETs connected in a threephase bridge configuration. A doubler charge pump provides the proper gate-bias voltage to the high-side NMOS FETs across a wide operating-voltage range in addition to providing 100% duty-cycle support. An internal linear regulator provides the gate-bias voltage for the low-side MOSFETs.

8.3.2 Device Interface

MCT8317A supports I²C interface to provide end application design with adequate flexibility. MCT8317A allows controlling the motor operation and system through BRAKE, DIR, EXT_CLK, EXT_WD and SPEED/WAKE pins. MCT8317A also provides different signals for monitoring algorithm variables, speed, fault and phase current feedback through DACOUT1, DACOUT2, FG, nFAULT, ALARM and SOX pins.

8.3.2.1 Interface - Control and Monitoring

Motor Control Signals

- When BRAKE pin is driven 'High', MCT8317A enters brake state. Low-side braking (see Low-Side Braking) is implemented during this brake state. MCT8317A decreases output speed to value defined by BRAKE_DUTY_THRESHOLD before entering brake state. As long as BRAKE is driven 'High', MCT8317A stays in brake state. Brake pin input can be overwritten by configuring BRAKE_INPUT over the I²C interface.
- The DIR pin decides the direction of motor spin; when driven 'High', the sequence is OUT A → OUT C → OUT B, and when driven 'Low' the sequence is OUT A → OUT B → OUT C. DIR pin input can be overwritten by configuring DIR_INPUT over the I²C interface.
- SPEED/WAKE pin is used to control motor speed and wake up MCT8317A from sleep mode. SPEED pin can be configured to accept PWM, frequency or analog input signals. It is used to enter and exit from sleep and standby mode (see 表 8-2).

External Oscillator and Watchdog Signals (Optional)

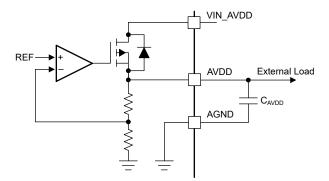
- EXT_CLK pin may be used to provide an external clock reference (see External Clock Source).
- EXT_WD pin may be used to provide an external watchdog signal (see External Watchdog).

Output Signals

- DACOUT1 outputs internal variable defined by address in register DACOUT1_VAR_ADDR, the output of DACOUT1 is refreshed every PWM cycle (see DAC outputs).
- DACOUT2 outputs internal variable defined by address in register DACOUT2_VAR_ADDR, the output of DACOUT2 is refreshed every PWM cycle (see DAC outputs).
- FG pin provides pulses which are proportional to motor speed (see FG Configuration).
- nFAULT pin provides fault status in device or motor operation.
- SOX pin provides the output of one of the current sense amplifiers.

8.3.2.2 I²C Interface

The MCT8317A supports an I^2C serial communication interface that allows an external controller to send and receive data. This I^2C interface lets the external controller configure the EEPROM and read detailed fault and motor state information. The I^2C bus is a two-wire interface using the SCL and SDA pins which are described as follows:


- The SCL pin is the clock signal input.
- The SDA pin is the data input and output.

8.3.3 AVDD Linear Voltage Regulator

A 3.3-V linear regulator is integrated into the MCT8317A and is available for use by external circuitry. The AVDD regulator is used for powering up the internal circuitry of the device and additionally, this regulator can also provide the supply voltage for an external low-power MCU or other circuitry supporting low current (up to 20 mA).

The AVDD nominal, no-load output voltage is 3.3-V.

图 8-2. AVDD Linear Regulator Block Diagram

Use 方程式 1 to calculate the power dissipated in the device by the AVDD linear regulator to deliver an external load, I_{AVDD} .

 $P = (V_{VIN AVDD} - V_{AVDD}) \times I_{AVDD}$

(1)

8.3.4 Charge Pump

Since the output stages use N-channel FETs, the device requires a gate-drive voltage higher than the VM power supply to turn-on the high-side FETs. The MCT8317A integrates a charge-pump circuit that generates a voltage above the VM supply for this purpose.

The charge pump requires two external capacitors (C_{CP} , C_{FLY}) for operation. See the block diagram and pin descriptions for details on these capacitors (value, connection, and so forth).

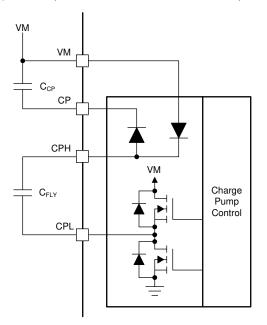


图 8-3. Charge Pump

8.3.5 Slew Rate Control

An adjustable gate-drive current control for the MOSFETs in the output stage is provided to achieve configurable slew rate for EMI mitigation. The MOSFET VDS slew rate is a critical factor for optimizing radiated emissions, total energy and duration of diode recovery spikes and switching voltage transients related to parasitic elements of the PCB. This slew rate is predominantly determined by the control of the internal MOSFET gate current as shown in 🕅 8-4.

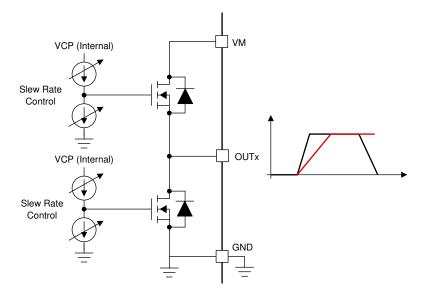


图 8-4. Slew Rate Circuit Implementation

The slew rate of each half-bridge can be adjusted through SLEW_RATE settings. Slew rate can be configured as 25-V/µs, 50-V/µs, 125-V/µs or 200-V/µs. The slew rate is calculated by the rise-time and fall-time of the voltage on OUTx pin as shown in 8 8-5.

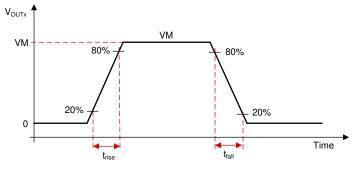


图 8-5. Slew Rate Timings

8.3.6 Cross Conduction (Dead Time)

The device is fully protected against any cross conduction of the MOSFETs. The high-side and low-side MOSFETs are carefully controlled to avoid any shoot-through events by inserting a dead time (t_{dead}). This is implemented by sensing the gate-source voltage (VGS) of the high-side and low-side MOSFETs and ensuring that the VGS of high-side MOSFET has reached below turn-off levels before switching on the low-side MOSFET of same half-bridge as shown in [8] 8-6 and [8] 8-7 and vice versa.

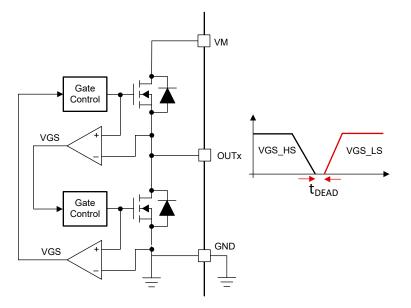


图 8-6. Cross Conduction Protection

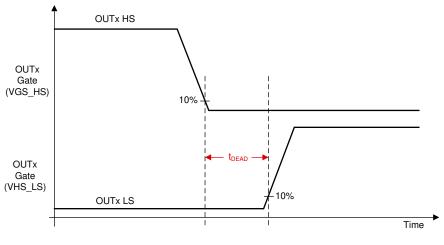


图 8-7. Dead Time

8.3.7 Motor Control Input Options

The MCT8317A offers three ways of controlling the motor:

- 1. SPEED Control: In speed control mode, the speed of the motor is controlled using a closed loop PI control according to the input reference.
- POWER Control: In power control mode, the DC input power of the inverter power stage is controlled using a 2. closed loop PI control according to the input reference.
- 3. VOLTAGE Control: In voltage control mode, the voltage (duty cycle) applied to the motor is controlled according to the input reference.

The MCT8317A offers four methods of directly controlling the reference input of the motor. The reference control method is configured by SPD CTRL MODE.

The reference (speed or power or voltage) input command can be controlled in one of the following four ways.

- PWM input on SPEED/WAKE pin by varying duty cycle of input signal
- Frequency input on SPEED/WAKE pin by varying frequency of input signal
- Analog input on SPEED/WAKE pin or DACOUT/SOx/SPEED ANA pin by varying amplitude of input signal
- Over I²C by configuring SPEED CTRL

The signal path from SPEED pin input (or I²C based speed input) to output duty cycle (DUTY OUT) applied to FETs is shown in **8**8-8.

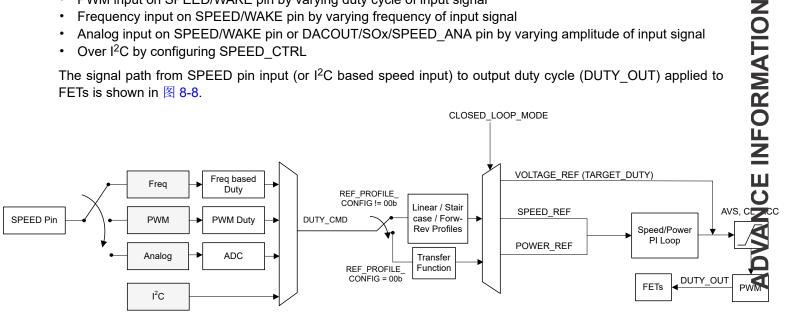


图 8-8. Multiplexing the Control Input Command

8.3.7.1 Analog Mode Speed Control

Analog input based speed control can be configured by setting SPD CTRL MODE to 00b. In this mode, the duty command (DUTY CMD) varies with the analog voltage input on the SPEED pin (V_{SPEED}). When $0 \leq$ $V_{SPEED} \leq V_{EN,SB}$, DUTY_CMD is set to zero and the motor is stopped. When $V_{EX,SB} \leq V_{SPEED} \leq V_{ANA,ES}$, DUTY_CMD varies linearly with V_{SPEED} as shown in 🛽 8-9. V_{EX SB} and V_{EN SB} are the standby entry and exit thresholds - refer \ddagger 8.4.1.2 for more information on V_{EX SB} and V_{EN SB}. When V_{SPEED} > V_{ANA_FS}, DUTY_CMD is clamped to 100%.

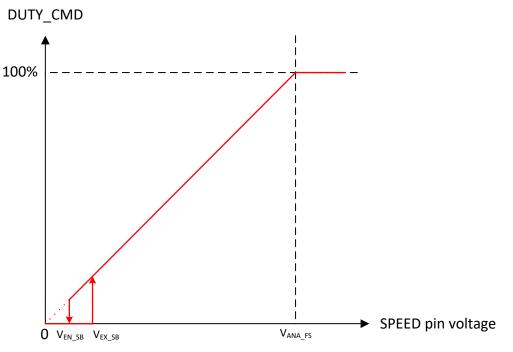


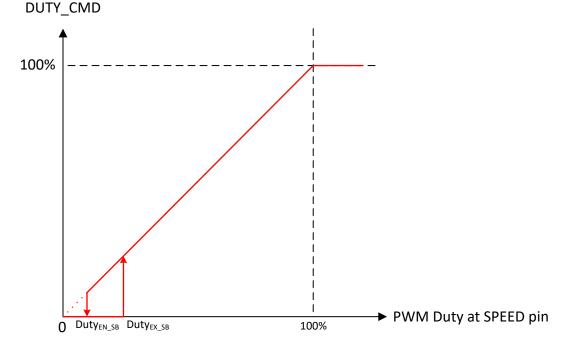
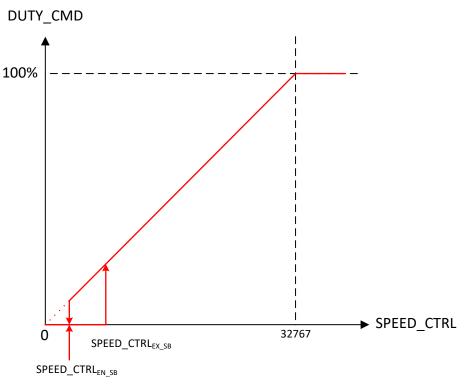
图 8-9. Analog Mode Speed Control

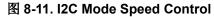
8.3.7.2 PWM-Mode Speed Control

PWM based speed control can be configured by setting SPD_CTRL_MODE to 01b. In this mode, the PWM duty cycle applied to the SPEED pin can be varied from 0 to 100% and duty command (DUTY_CMD) varies linearly with the applied PWM duty cycle. When $0 \leq \text{Duty}_{\text{SPEED}} \leq \text{Duty}_{\text{EN}_SB}$, DUTY_CMD is set to zero and the motor is stopped. When $\text{Duty}_{\text{EX}_SB} \leq \text{Duty}_{\text{SPEED}} \leq 100\%$, DUTY_CMD varies linearly with $\text{Duty}_{\text{SPEED}}$ as shown in \boxtimes 8-10. $\text{Duty}_{\text{EX}_SB}$ and $\text{Duty}_{\text{EN}_SB}$ are the standby entry and exit thresholds - refer $\ddagger 8.4.1.2$ for more information on $\text{Duty}_{\text{EX}_SB}$ and $\text{Duty}_{\text{EN}_SB}$. The frequency of the PWM input signal applied to the SPEED pin is defined as f_{PWM} and the range for this frequency can be configured through SPD_PWM_RANGE_SELECT.

备注

- f_{PWM} is the frequency of the PWM signal the device can accept at SPEED pin to control motor speed. It does not correspond to the PWM output frequency that is applied to the motor phases. The PWM output frequency can be configured through PWM FREQ OUT (see ^{††} 8.3.14).
- SLEEP_TIME should be set longer than the off time in PWM signal (V_{SPEED} < V_{IL}) at lowest duty input. For example, if f_{PWM} is 10 kHz and lowest duty input is 2%, SLEEP_TIME should be more than 98 µs to ensure there is no unintended sleep entry.


图 8-10. PWM Mode Speed Control

8.3.7.3 I²C based Speed Control

I²C based serial interface can be used for speed control by setting SPD_CTRL_MODE to 10b. In this mode, the speed command can be written directly into SPEED_CTRL. The SPEED pin can be used to control the sleep entry and exit - if SPEED pin input is set to a value lower than V_{EN_SL} after SPEED_CTRL has been set to 0b for a time longer than SLEEP_TIME, MCT8317A enters sleep state. When SPEED pin > V_{EX_SL} , MCT8317A exits sleep state and speed is controlled through SPEED_CTRL. If $0 \leq$ SPEED_CTRL \leq SPEED_CTRL_{EN_SB} and SPEED pin > V_{EX_SL} , MCT8317A is in standby state. The relationship between DUTY_CMD and SPEED_CTRL is shown in 🕅 8-11. Refer \ddagger 8.4.1.2 for more information on SPEED_CTRL_{EN_SB} and SPEED_CTRL_{EN_SB} and SPEED_CTRL_{EN_SB}.

8.3.7.4 Frequency-Mode Speed Control

Frequency based speed control is configured by setting SPD_CTRL_MODE to 11b. In this mode, duty command varies linearly as a function of the frequency of the square wave input at SPEED pin. When $0 \leq \text{Freq}_{\text{SPEED}} \leq \text{Freq}_{\text{SB}}$, DUTY_CMD is set to zero and the motor is stopped. When $\text{Freq}_{\text{EX_SB}} \leq \text{Freq}_{\text{SPEED}} \leq \text{INPUT}_{\text{MAX}}$ FREQUENCY, DUTY_CMD varies linearly with $\text{Freq}_{\text{SPEED}}$ as shown in $[\underline{\mathbb{X}}]$ 8-12. $\text{Freq}_{\text{EX}_{\text{SB}}}$ and $\text{Freq}_{\text{EN}_{\text{SB}}}$ are the standby entry and exit thresholds - refer $\ddagger 8.4.1.2$ for more information on $\text{Freq}_{\text{EX}_{\text{SB}}}$ and $\text{Freq}_{\text{EN}_{\text{SB}}}$. Input frequency greater than INPUT_MAX_FREQUENCY clamps the DUTY_CMD to 100%.

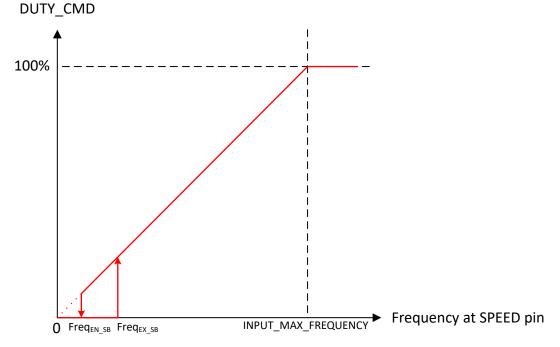
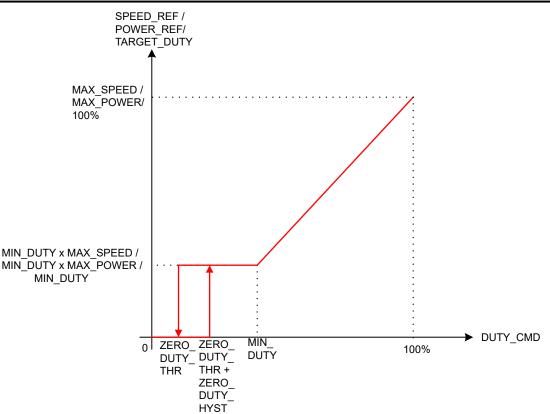
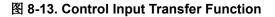




图 8-12. Frequency Mode Speed Control

8.3.7.5 Reference Profiles

MCT8317A supports three different kinds of reference (speed/power) profiles (linear, step, forward-reverse) to enable a variety of end-user applications. The different reference profiles can be configured through REF_PROFILE_CONFIG. When REF_PROFILE_CONFIG is set to 00b, the voltage/speed/power reference or target duty is a function of the duty command as shown in 🛛 8-13.

When speed/power loop is disabled (CLOSED_LOOP_MODE = 00b), DUTY_CMD sets the TARGET_DUTY in % - TARGET_DUTY is 100% when DUTY_CMD is 100% and TARGET_DUTY is equal to MIN_DUTY when DUTY_CMD is set to MIN_DUTY. TARGET_DUTY stays clamped at MIN_DUTY for ZERO_DUTY_THR \leq DUTY_CMD \leq MIN_DUTY.

When speed loop is enabled (CLOSED_LOOP_MODE = 01b), DUTY_CMD sets the SPEED_REF in Hz. MAX_SPEED sets the SPEED_REF at DUTY_CMD of 100%. MIN_DUTY sets the minimum SPEED_REF (MIN_DUTY x MAX_SPEED). SPEED_REF stays clamped at (MIN_DUTY x MAX_SPEED) for ZERO_DUTY_THR \leq DUTY_CMD \leq MIN_DUTY.

When power loop is enabled (CLOSED_LOOP_MODE = 10b), DUTY_CMD sets the POWER_REF in W. MAX_POWER sets the POWER_REF at DUTY_CMD of 100%. MIN_DUTY sets the minimum POWER_REF (MIN_DUTY x MAX_POWER). POWER_REF stays clamped at (MIN_DUTY x POWER_REF) for ZERO_DUTY_THR \leq DUTY_CMD \leq MIN_DUTY.

ZERO_DUTY_THR sets the DUTY_CMD below which SPEED_REF / POWER_REF / TARGET_DUTY is set to zero and motor is in stopped state. AVS, CL_ACC configure the transient characteristics of DUTY_OUT; the steady state value of DUTY_OUT is directly configured in % through TARGET_DUTY (when speed/power loop is disabled) or through SPEED_REF/POWER_REF (when speed/power loop is enabled).

8.3.7.5.1 Linear Reference Profile

备注

For all types of reference profiles, duty command < ZERO_DUTY_THR stops the motor irrespective of the speed profile register settings.

Texas

INSTRUMENTS

www.ti.com.cn

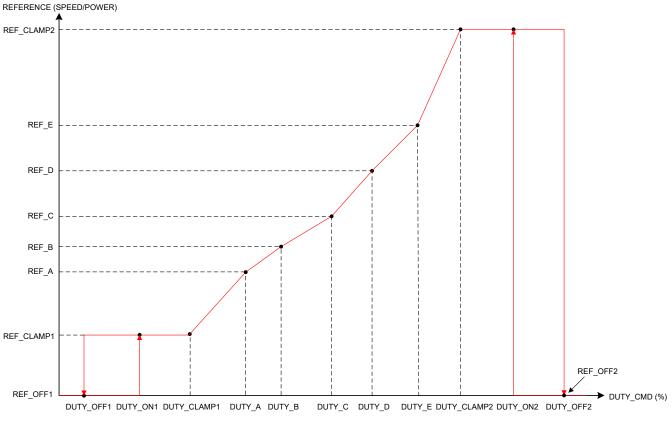


图 8-14. Linear Reference Profile

Linear reference profile can be configured by setting REF_PROFILE_CONFIG to 01b. Linear reference profile features speed/power references which change linearly between REF_CLAMP1 and REF_CLAMP2 with different slopes which can be set by configuring DUTY_x and REF_x combination.

- DUTY_ON1 configures the duty command above which MCT8317A starts driving the motor (to speed/power reference set by REF_CLAMP1) when the current speed/power reference is zero. When current speed/power reference is zero and duty command is below DUTY_ON1, MCT8317A continues to be in off state and motor is stationary.
- DUTY_OFF1 configures the duty command below which the speed/power reference changes to REF_OFF1.
- DUTY_CLAMP1 configures the duty command till which speed/power reference will be constant. REF_CLAMP1 configures this constant speed/power reference between DUTY_OFF1 and DUTY_CLAMP1.
- DUTY_A configures the duty command for speed/power reference REF_A. The speed/power reference changes linearly between DUTY_CLAMP1 and DUTY_A.
- DUTY_B configures the duty command for speed/power reference REF_B. The speed/power reference changes linearly between DUTY_A and DUTY_B.
- DUTY_C configures the duty command for speed/power reference REF_C. The speed/power reference changes linearly between DUTY_B and DUTY_C.
- DUTY_D configures the duty command for speed/power reference REF_D. The speed/power reference changes linearly between DUTY_C and DUTY_D.
- DUTY_E configures the duty command for speed/power reference REF_E. The speed/power reference changes linearly between DUTY_D and DUTY_E.
- DUTY_CLAMP2 configures the duty command above which the speed/power reference will be constant at REF_CLAMP2. REF_CLAMP2 configures this constant speed/power reference between DUTY_CLAMP2 and DUTY_OFF2. The speed/power reference changes linearly between DUTY_E and DUTY_CLAMP2.
- DUTY_ON2 configures the duty command below which MCT8317A starts driving the motor (to speed/power reference set by REF_CLAMP2) when the current speed/power reference is zero. When current speed/power

reference is zero and duty command is above DUTY_ON2, MCT8317A continues to be in off state and motor is stationary.

 DUTY_OFF2 configures the duty command above which the speed/power reference will change from REF_CLAMP2 to REF_OFF2.

8.3.7.5.2 Staircase Reference Profile

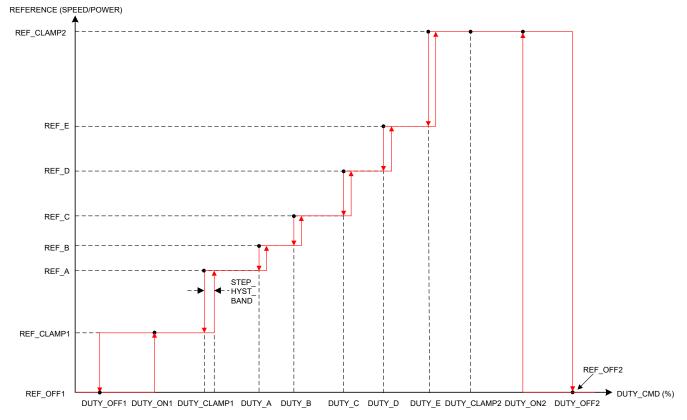


图 8-15. Staircase Reference Profile

Staircase reference profiles can be configured by setting REF_PROFILE_CONFIG to 10b. Staircase reference profiles feature reference changes in steps between REF_CLAMP1 and REF_CLAMP2. DUTY_x configures the duty command at which the next staircase level reference (REF_x) is set .

- DUTY_ON1 configures the duty command above which MCT8317A starts driving the motor (to speed/power reference set by REF_CLAMP1) when the current speed/power reference is zero. When current speed/power reference is zero and duty command is below DUTY_ON1, MCT8317A continues to be in off state and motor is stationary.
- DUTY_OFF1 configures the duty command below which the speed/power reference changes from REF_CLAMP1 to REF_OFF1.
- DUTY_CLAMP1 configures the duty command till which speed/power reference will be constant. REF_CLAMP1 configures this constant speed/power reference between DUTY_OFF1 and DUTY_CLAMP1.
- DUTY_A configures the duty command for speed/power reference REF_A. There is a step change in speed/ power reference from REF_CLAMP1 to REF_A at DUTY_CLAMP1.
- DUTY_B configures the duty command for speed/power reference REF_B. There is a step change in speed/ power reference from REF_A to REF_B at DUTY_A.
- DUTY_C configures the duty command for speed/power reference REF_C. There is a step change in speed/ power reference from REF_B to REF_C at DUTY_B.
- DUTY_D configures the duty command for speed/power reference REF_D. There is a step change in speed/ power reference from REF_C to REF_D at DUTY_C.

REFERENCE (SPEED/POWER)

- DUTY_E configures the duty command for speed/power reference REF_E. There is a step change in speed/ power reference from REF_D to REF_E at DUTY_D.
- DUTY_CLAMP2 configures the duty command above which the speed/power reference will be constant at REF_CLAMP2. REF_CLAMP2 configures this constant speed/power reference between DUTY_CLAMP2 and DUTY_OFF2. There is a step change in speed/power reference from REF_E to REF_CLAMP2 at DUTY_E.
- DUTY_ON2 configures the duty command below which MCT8317A starts driving the motor (to speed/power reference set by REF_CLAMP2) when the current speed/power reference is zero. When current speed/power reference is zero and duty command is above DUTY_ON2, MCT8317A continues to be in off state and motor is stationary.
- DUTY_OFF2 configures the duty command above which the speed/power reference will change from REF_CLAMP2 to REF_OFF2.

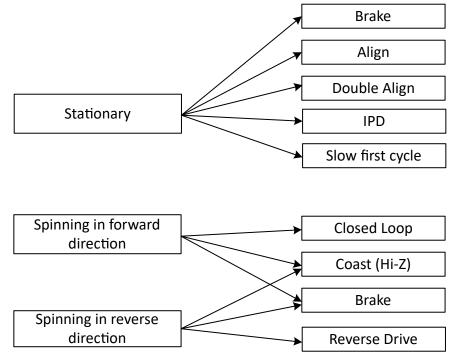
8.3.7.5.3 Forward-Reverse Reference Profile

Forward Direction Reverse Direction OUT A OUT B — OUT C OUT B OUT A OUT C REF_CLAMP2 REF CLAMP1 REF D REF A STEP STER HYST HYS BAND BAND REF OFF2 REF_OFF1 DUTY CMD (%) DUTY D DUTY_E DUTY CLAMP2 DUTY ON2 DUTY OFF2 DUTY OFF1 DUTY ON1 DUTY CLAMP1 DUTY A DUTY B DUTY_C

图 8-16. Forward-Reverse Reference Profile

Forward-Reverse speed/power profile can be configured by setting REF_PROFILE_CONFIG to 11b. Forward-Reverse speed/power profile features direction change through adjusting the duty command. DUTY_C configures duty command at which the direction will be changed. The Forward-Reverse speed/power profile can be used to eliminate the separate signal used to control the motor direction.

• DUTY_ON1 configures the duty command above which MCT8317A starts driving the motor in the forward direction (to speed/power reference set by REF_CLAMP1) when the current speed/power reference is zero. When current speed/power reference is zero and duty command is below DUTY_ON1, MCT8317A continues to be in off state and motor is stationary.


Copyright © 2023 Texas Instruments Incorporated

- DUTY_OFF1 configures the duty command below which the speed/power reference changes in the forward direction from REF_CLAMP1 to REF_OFF1.
- DUTY_CLAMP1 configures the duty command below which speed/power reference will be the constant in forward direction. REF_CLAMP1 configures constant speed/power reference between DUTY_CLAMP1 and DUTY_OFF1.
- DUTY_A configures the duty command for speed/power reference REF_A. The speed/power reference changes linearly between DUTY_CLAMP1 and DUTY_A.
- DUTY_B configures the duty command above which MCT8317A will be in off state. The speed/power reference remains constant at REF_A between DUTY_A and DUTY_B.
- DUTY_C configures the duty command at which the direction is changed
- DUTY_D configures the duty command above which the MCT8317A will be in running state in the reverse direction. REF_D configures constant speed/power reference between DUTY_D and DUTY_E.
- DUTY_CLAMP2 configures the duty command above which speed/power reference will be constant at REF_CLAMP2 in reverse direction. The speed/power reference changes linearly between DUTY_E and DUTY_CLAMP2.
- DUTY_ON2 configures the duty command below which MCT8317A starts driving the motor in the reverse direction (to speed/power reference set by REF_CLAMP2) when the current speed/power reference is zero. When current speed/power reference is zero and duty command is above DUTY_ON2, MCT8317A continues to be in off state and motor is stationary.
- DUTY_OFF2 configures the duty command above which the speed/power reference changes in the reverse direction from REF_CLAMP2 to REF_OFF2.

8.3.8 Starting the Motor Under Different Initial Conditions

The motor can be in one of three states when MCT8317A begins the start-up process. The motor may be stationary, spinning in the forward direction, or spinning in the reverse direction. The MCT8317A includes a number of features to allow for reliable motor start-up under all of these conditions. 🕅 8-17 shows the motor start-up flow for each of the three initial motor states.

图 8-17. Starting the motor under different initial conditions

备注

"Forward" means "spinning in the same direction as the commanded direction", and "Reverse" means "spinning in the opposite direction as the commanded direction".

8.3.8.1 Case 1 - Motor is Stationary

If the motor is stationary, the commutation must be initialized to be in phase with the position of the motor. The MCT8317A provides various options to initialize the commutation logic to the motor position and reliably start the motor.

- The align and double align techniques force the motor into alignment by applying a voltage across a particular motor phase to force the motor to rotate in alignment with this phase.
- Initial position detect (IPD) determines the position of the motor based on the deterministic inductance variation, which is often present in BLDC motors.
- The slow first cycle method starts the motor by applying a low frequency cycle to align the rotor position to the applied commutation by the end of one electrical rotation.

MCT8317A also provides a configurable brake option to ensure the motor is stationary before initiating one of the above start-up methods. Device enters open loop acceleration after going through the configured start-up method.

8.3.8.2 Case 2 – Motor is Spinning in the Forward Direction

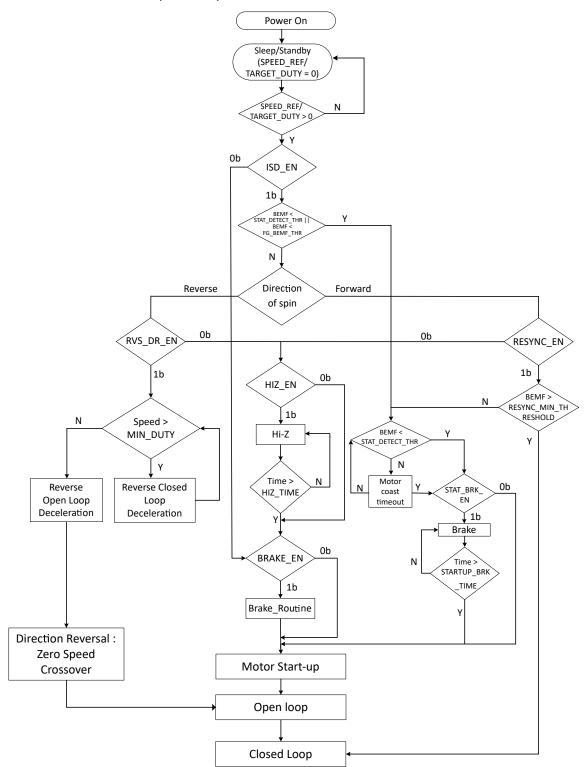
If the motor is spinning forward (same direction as the commanded direction) with sufficient speed (BEMF), the MCT8317A resynchronizes with the spinning motor and continues commutation by going directly to closed loop operation. By resynchronizing to the spinning motor, the user achieves the fastest possible start-up time for this initial condition. This resynchronization feature can be enabled or disabled through RESYNC_EN. If resynchronization is disabled, the MCT8317A can be configured to wait for the motor to coast to a stop and/or apply a brake. After the motor has stopped spinning, the motor start-up sequence proceeds as in Case 1, considering the motor is stationary.

8.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction

If the motor is spinning in the reverse direction (the opposite direction as the commanded direction), the MCT8317A provides several methods to change the direction and drive the motor to the target speed reference in the commanded direction.

The reverse drive method allows the motor to be driven so that it decelerates through zero speed. The motor achieves the shortest possible spin-up time when spinning in the reverse direction.

If reverse drive is not enabled, then the MCT8317A can be configured to wait for the motor to coast to a stop and/or apply a brake. After the motor has stopped spinning, the motor start-up sequence proceeds as in Case 1, considering the motor is stationary.


备注

Take care when using the reverse drive or brake feature to ensure that the current is limited to an acceptable level and that the supply voltage does not surge as a result of energy being returned to the power supply.

8.3.9 Motor Start Sequence (MSS)

图 8-18 shows the motor-start sequence implemented in MCT8317A.

ADVANCE INFORMATION

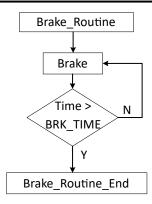


图 8-19. Brake Routine

Power-On State	This is the initial state of the Motor Start Sequence (MSS) when MCT8317A is powered on. In this state, MCT8317A configures the peripherals, initializes the algorithm parameters from EEPROM and prepares for driving the motor.
Sleep/Standby	In this state, SPEED_REF/TARGET_DUTY is set to zero and MCT8317A is either in sleep or standby mode depending on DEV_MODE and SPEED/ WAKE pin voltage.
SPEED_REF/TARGET_DUTY > 0 Judgement	When SPEED_REF is set to greater than zero, MCT8317A exits the sleep (SPEED pin voltage > V_{IL})/standby state and proceeds to ISD_EN judgement. As long as SPEED_REF is set to zero, MCT8317A stays in sleep/standby state.
ISD_EN Judgement	MCT8317A checks to see if the initial speed detect (ISD) function is enabled (ISD_EN = 1b). If ISD is enabled, MSS proceeds to the BEMF < STAT_DETECT_THR judgement. Instead, if ISD is disabled, the MSS proceeds directly to the BRAKE_EN judgement.
BEMF < STAT_DETECT_THR BEMF < FG_BEMF_THR Judgement	ISD determines the initial condition (speed, angle, direction of spin) of the motor (see
STAT_BRK_EN Judgement	The MSS checks if the stationary brake function is enabled (STAT_BRK_EN =1b). If the stationary brake function is enabled, the MSS advances to the stationary brake routine. If the stationary brake function is disabled, the MSS advances to motor start-up state (see $\ddagger 8.3.9.4$).
Stationary Brake Routine	The stationary brake routine can be used to ensure the motor is completely stationary before attempting to start the motor. The stationary brake is applied by turning on all three low-side driver MOSFETs for a time configured by STARTUP_BRK_TIME.
Direction of spin Judgement	The MSS determines whether the motor is spinning in the forward or the reverse direction. If the motor is spinning in the forward direction, the MCT8317A proceeds to the RESYNC_EN judgement. If the motor is spinning in the reverse direction, the MSS proceeds to the RVS_DR_EN judgement.
RESYNC_EN Judgement	If RESYNC_EN is set to 1b, MCT8317A proceeds to BEMF > RESYNC_MIN_THRESHOLD judgement. If RESYNC_EN is set to 0b, MSS proceeds to HIZ_EN judgement.

BEMF > RESYNC_MIN_THRESHOLD Judgement	If motor speed is such that BEMF > RESYNC_MIN_THRESHOLD, MCT8317A uses the speed and position information from ISD to transition to the closed loop state (see 节 8.3.9.2) directly. If BEMF < RESYNC_MIN_THRESHOLD, MCT8317A proceeds to BEMF < STAT_DETECT_THR judgement.
BEMF < STAT_DETECT_THR Judgement	If motor speed is such that BEMF > STAT_DETECT_THR, MCT8317A proceeds to motor coast timeout. If BEMF < STAT_DETECT_THR, MCT8317A proceeds to STAT_BRK_EN judgement.
Motor Coast Timeout	MCT8317A waits for 200000 PWM cycles for the motor to coast down to a speed where BEMF < STAT_DETECT_THR; after 200000 PWM cycles lapse in the motor coast state, MCT8317A proceeds to STAT_BRK_EN judgement irrespective of BEMF. If BEMF < STAT_DETECT_THR during motor coast before the 200000 cycle timeout, MCT8317A proceeds to STAT_BRK_EN judgement immediately.
RVS_DR_EN Judgement	The MSS checks to see if the reverse drive function is enabled (RVS_DR_EN = 1b). If it is enabled, the MSS transitions to check speed of the motor in reverse direction. If the reverse drive function is not enabled (RVS_DR_EN = 0b), the MSS advances to the HIZ_EN judgement.
Speed > MIN_DUTY Judgement	The MSS checks if the speed (in reverse direction) is higher than the speed at MIN_DUTY - till the speed (in reverse direction) is higher than the speed at MIN_DUTY, MSS stays in reverse closed loop deceleration. When speed (in reverse direction) drops below the speed at MIN_DUTY, the MSS transitions to reverse open loop deceleration.
Reverse Open Loop Deceleration and Zero Speed Crossover	In reverse open loop deceleration, the MCT8317A decelerates the motor in open-loop till speed reaches zero. At zero speed, direction changes and MCT8317A begins open loop acceleration.
HIZ_EN Judgement	The MSS checks to determine whether the coast (Hi-Z) function is enabled
	(HIZ_EN = 1b). If the coast function is enabled (HIZ_EN = 1b), the MSS advances to the coast routine. If the coast function is disabled (HIZ_EN = 0b), the MSS advances to the BRAKE_EN judgement.
Coast (Hi-Z) Routine	advances to the coast routine. If the coast function is disabled (HIZ_EN =
Coast (Hi-Z) Routine BRAKE_EN Judgement	advances to the coast routine. If the coast function is disabled (HIZ_EN = 0b), the MSS advances to the BRAKE_EN judgement. The device coasts the motor by turning OFF all six MOSFETs for a certain
	advances to the coast routine. If the coast function is disabled (HIZ_EN = 0b), the MSS advances to the BRAKE_EN judgement. The device coasts the motor by turning OFF all six MOSFETs for a certain time configured by HIZ_TIME. The MSS checks to determine whether the brake function is enabled (BRAKE_EN = 1b). If the brake function is enabled (BRAKE_EN = 1b), the MSS advances to the brake routine. If the brake function is disabled (BRAKE_EN = 0b), the MSS advances to the motor start-up state (see ‡

8.3.9.1 Initial Speed Detect (ISD)

The ISD function is used to identify the initial condition of the motor and is enabled by setting ISD_EN to 1b. The initial speed, position and direction is determined by sampling the phase voltage through the internal ADC. ISD

can be disabled by setting ISD_EN to 0b. If the function is disabled (ISD_EN set to 0b), the MCT8317A does not perform the initial speed detect function and proceeds to check if the brake routine (BRAKE_EN) is enabled.

8.3.9.2 Motor Resynchronization

The motor resynchronization function works when the ISD and resynchronization functions are both enabled and the device determines that the initial state of the motor is spinning in the forward direction (same direction as the commanded direction). The speed and position information measured during ISD are used to initialize the drive state of the MCT8317A, which can transition directly into closed loop state without needing to stop the motor. In the MCT8317A, motor resynchronization can be enabled/disabled through RESYNC_EN bit. If motor resynchronization is disabled, the device proceeds to check if the motor coast (Hi-Z) routine is enabled.

8.3.9.3 Reverse Drive

The MCT8317A uses the reverse drive function to change the direction of the motor rotation when ISD_EN and RVS_DR_EN are both set to 1b and the ISD determines the motor spin direction to be opposite to that of the commanded direction. Reverse drive includes synchronizing with the motor speed in the reverse direction, reverse decelerating the motor through zero speed, changing direction, and accelerating in open loop in forward (or commanded) direction until the device transitions into closed loop in forward direction (see 8-20). MCT8317A uses the same parameter values for open to closed loop handoff threshold (OPN_CL_HANDOFF_THR), open loop acceleration rates (OL_ACC_A1, OL_ACC_A2) and open loop current limit (OL_ILIMIT) in the reverse direction as in the forward direction..

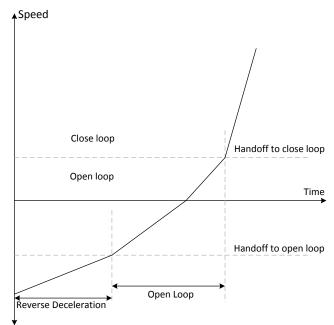


图 8-20. Reverse Drive Function

8.3.9.4 Motor Start-up

There are different options available for motor start-up from a stationary position and these options can be configured by MTR_STARTUP. In align and double align mode, the motor is aligned to a known position by injecting a DC current. In IPD mode, the rotor position is estimated by applying 6 different high-frequency pulses. In slow first cycle mode, the motor is started by applying a low frequency cycle.

8.3.9.4.1 Align

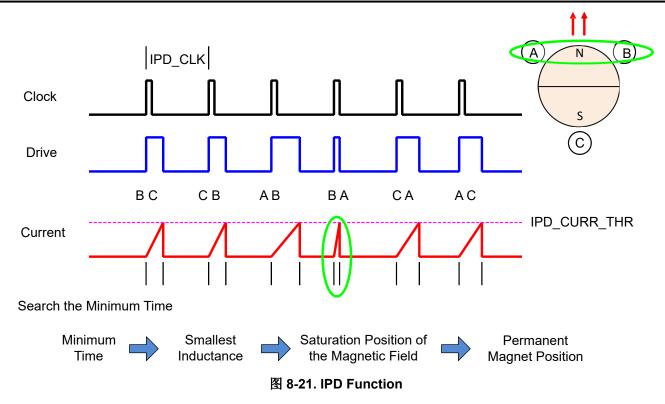
Align is enabled by configuring MTR_STARTUP to 00b. The MCT8317A aligns the motor by injecting a DC current using a particular phase pattern (phase-C high-side FET and phase-B low-side FET are ON) - current flowing into phase-B and flowing out from phase-C for a certain time configured by ALIGN_TIME.

The duty cycle during align is defined by ALIGN_DUTY. In MCT8317A, current limit during align is configured through OL_ILIMIT_CONFIG and is determined by ILIMIT or OL_ILIMIT based on configuration of OL_ILIMIT_CONFIG.

A fast change in the phase current during align may result in a sudden change in the driving torque and this could result in acoustic noise. To avoid this, the MCT8317A ramps up duty cycle from 0 to until it reaches ALIGN_DUTY at a configurable rate set by ALIGN_RAMP_RATE. At the end of align routine, the motor will be aligned at the known position.

8.3.9.4.2 Double Align

Double align is enabled by configuring MTR_STARTUP to 01b. Single align is not reliable when the initial position of the rotor is 180° out of phase with the applied phase pattern. In this case, it is possible to have start-up failures using single align. In order to improve the reliability of align based start-up, the MCT8317A provides the option of double align start-up. In double align start-up, MCT8317A uses a phase pattern for the second align that is 60° out of phase with the first align phase pattern in the commanded direction. In double align, relevant parameters like align time, current limit, ramp rate are the same as in the case of single align - two different phase patterns are applied in succession with the same parameters to ensure that the motor will be aligned to a known position irrespective of initial rotor position.


8.3.9.4.3 Initial Position Detection (IPD)

Initial Position Detection (IPD) can be enabled by configuring MTR_STARTUP to 10b. In IPD, inductive sense method is used to determine the initial position of the motor using the spatial variation in the motor inductance.

Align or double align may result in the motor spinning in the reverse direction before starting open loop acceleration. IPD can be used in such applications where reverse rotation of the motor is unacceptable. IPD does not wait for the motor to align with the commutation and therefore can allow for a faster motor start-up sequence. IPD works well when the inductance of the motor varies as a function of position. IPD works by pulsing current in to the motor and hence can generate acoustics which must be taken into account when determining the best start-up method for a particular application.

8.3.9.4.3.1 IPD Operation

IPD operates by sequentially applying six different phase patterns according to the following sequence: BC-> CB-> AB-> BA-> CA-> AC (see \boxtimes 8-21). When the current reaches the threshold configured by IPD_CURR_THR, the MCT8317A stops driving the particular phase pattern and measures the time taken to reach the current threshold from when the particular phase pattern was applied. Thus, the time taken to reach IPD_CURR_THR is measured for all six phase patterns - this time varies as a function of the inductance in the motor windings. The state with the shortest time represents the state with the minimum inductance. The minimum inductance is because of the alignment of the north pole of the motor with this particular driving state.

8.3.9.4.3.2 IPD Release Mode

Two modes are available for configuring the way the MCT8317A stops driving the motor when the current threshold is reached. The recirculate (or brake) mode is selected if IPD_RLS_MODE = 0b. In this configuration, the low-side (LSC) MOSFET remains ON to allow the current to recirculate between the MOSFET (LSC) and body diode (LSA) (see 8 8-22). Hi-Z mode is selected if IPD_RLS_MODE = 1b. In Hi-Z mode, both the high-side (HSA) and low-side (LSC) MOSFETs are turned OFF and the current recirculates through the body diodes back to the power supply (see 8 8-23).

In the Hi-Z mode, the phase current has a faster settle-down time, but that can result in a voltage increase on V_M . The user must manage this with an appropriate selection of either a clamp circuit or by providing sufficient capacitance between V_M and GND to absorb the energy. If the voltage surge cannot be contained or if it is unacceptable for the application, recirculate mode must be used. When using the recirculate mode, select the IPD_CLK_FREQ appropriately to give the current in the motor windings enough time to decay to to 0-A before the next IPD phase pattern is applied.

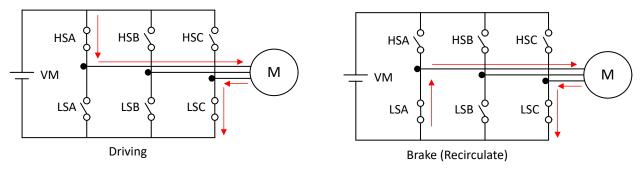


图 8-22. IPD Release Mode 0

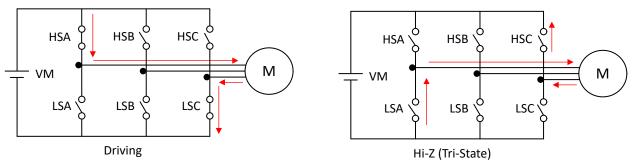


图 8-23. IPD Release Mode 1

8.3.9.4.3.3 IPD Advance Angle

After the initial position is detected, the MCT8317A begins driving the motor in open loop at an angle specified by IPD_ADV_ANGLE.

Advancing the drive angle anywhere from 0° to 180° results in positive torque. Advancing the drive angle by 90° results in maximum initial torque. Applying maximum initial torque could result in uneven acceleration to the rotor. Select the IPD_ADV_ANGLE to allow for smooth acceleration in the application (see 8 8-24).

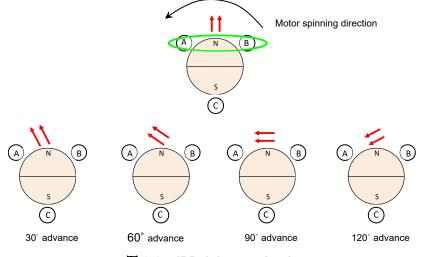


图 8-24. IPD Advance Angle

8.3.9.4.4 Slow First Cycle Startup

Slow First Cycle start-up is enabled by configuring MTR_STARTUP to 11b. In slow first cycle start-up, the MCT8317A starts motor commutation at a frequency defined by SLOW_FIRST_CYCLE_FREQ. The frequency configured is used only for first cycle, and then the motor commutation follows acceleration profile configured by open loop acceleration coefficients A1 and A2. The slow first cycle frequency has to be configured to be slow enough to allow motor to synchronize with the commutation sequence. This mode is useful when fast startup is desired as it significantly reduces the align time.

8.3.9.4.5 Open loop

Upon completing the motor position initialization with either align, double align, IPD or slow first cycle, the MCT8317A begins to accelerate the motor in open loop. During open loop, fixed duty cycle is applied and the cycle by cycle current limit functionality is used to regulate the current.

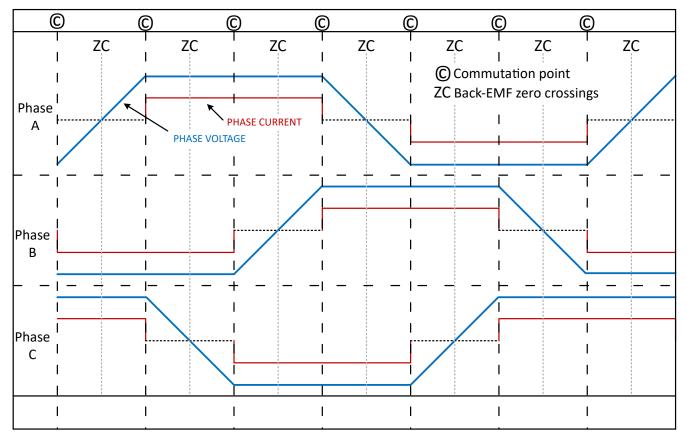
In MCT8317A, open loop current limit threshold is selected through OL_ILIMIT_CONFIG and is set either by ILIMIT or OL_ILIMIT based on the configuration of OL_ILIMIT_CONFIG. Open loop duty cycle is configured through OL_DUTY. While the motor is in open loop, speed (and commutation instants) is determined by 方程式 2. In MCT8317A, open loop acceleration coefficients, A1 and A2 are configured through OL_ACC_A1 and OL_ACC_A2 respectively. The function of the open-loop operation is to drive the motor to a speed at which the

motor generates sufficient BEMF to allow the BEMF zero-crossing based commutation control to accurately drive the motor.

Speed (t) = A1 * t + 0.5 * A2 * t²

(2)

8.3.9.4.6 Transition from Open to Closed Loop


MCT8317A has an internal mechanism to determine the motor speed for transition from open loop commutation to BEMF zero crossing based closed loop commutation. This feature of automatically deciding the open to closed handoff speed can be enabled by configuring AUTO_HANDOFF to 1b. If AUTO_HANDOFF is set to 0b, the open to closed loop handoff speed needs to be configured by OPN_CL_HANDOFF_THR. The closed loop in this section does not refer to closed speed loop - it refers to the commutation control changing from open loop (equation based) to closed loop (BEMF zero crossing based).

8.3.10 Closed Loop Operation

In closed loop operation, the MCT8317A drives the motor using trapezoidal commutation. The commutation instant is determined by the BEMF zero crossing on the phase which is not driven (Hi-Z). The duty cycle of the applied motor voltage is determined by DUTY OUT (see Motor Control Input Options).

8.3.10.1 120° Commutation

In 120° commutation, each phase is driven for 120° and is Hi-Z for 60° within each half electrical cycle as shown in \mathbb{E} 8-25. In 120° commutation there are six different commutation states. 120° commutation can be configured by setting COMM_CONTROL to 00b. MCT8317A supports different modulation modes with 120° commutation which can be configured through PWM_MODUL.

图 8-25. 120° commutation

8.3.10.1.1 High-Side Modulation

High-side modulation can be configured by setting PWM_MODUL to 00b. In high-side modulation, for a given commutation state, one of the high-side FETs is switching with the commanded duty cycle DUTY_OUT, while the low-side FET is ON with 100% duty cycle (see 8 8-26).

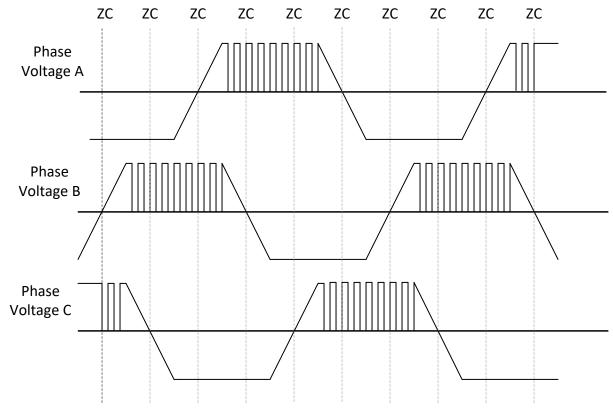


图 8-26. 120° commutation in High Side Modulation Mode

8.3.10.1.2 Low-Side Modulation

Low-side modulation can be configured by setting PWM_MODUL to 01b. In low-side modulation, for a given commutation state, one of the low-side FETs is switching with the commanded duty cycle DUTY_OUT, while the high-side FET is ON with 100% duty cycle (see 8 8-27).

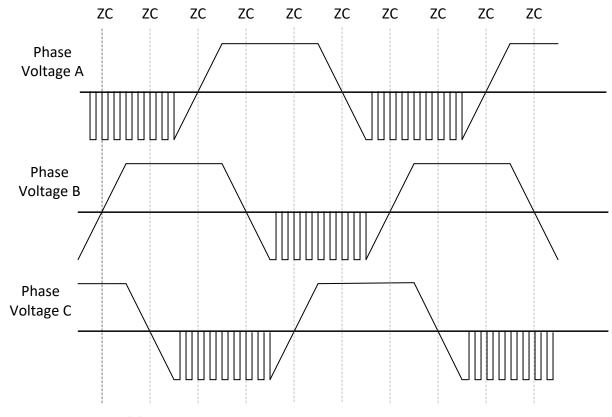


图 8-27. 120 ° commutation in Low Side Modulation Mode

8.3.10.1.3 Mixed Modulation

Mixed modulation can be configured by setting PWM_MODUL to 10b. In mixed modulation, MCT8317A dynamically switches between high and low-side modulation (see 🛛 8-28). The switching losses are distributed evenly amongst the high and low-side MOSFETs in mixed modulation mode.

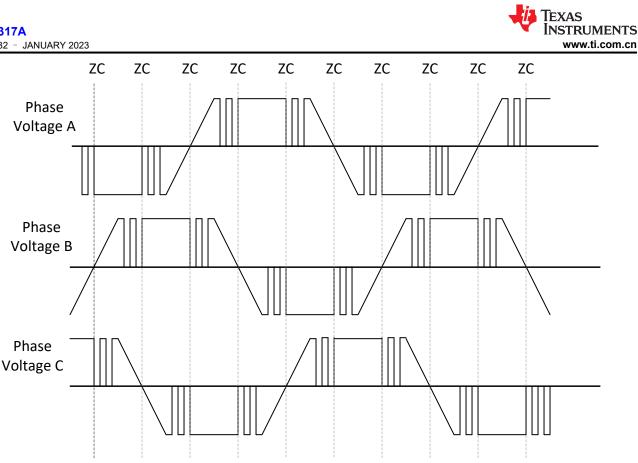
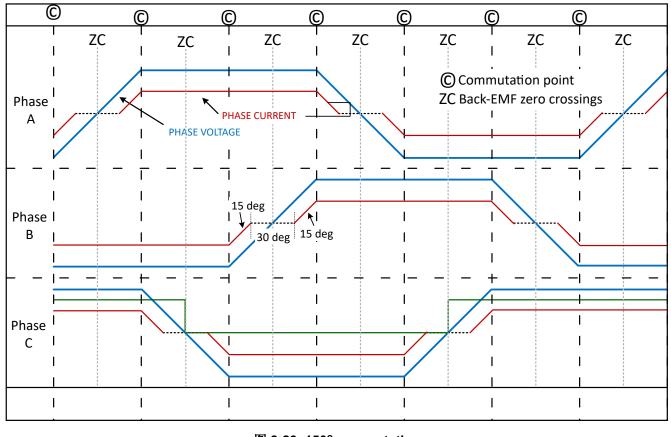



图 8-28. 120^o commutation in Mixed Modulation Mode

8.3.10.2 Variable Commutation

Variable commutation can be configured by setting COMM_CONTROL to 01b. 120° commutation may result in acoustic noise due to the long Hi-Z period causing some torgue ripple in the motor. In order to reduce this torgue ripple and acoustic noise, the MCT8317A uses variable commutation to reduce the phase current ripple at commutation by extending 120° driving time and gradually decreasing duty cycle prior to entering Hi-Z state. In this mode, the phase is Hi-Z between 30° and 60° and this window size is dynamically adjusted based on speed. A smaller window size will typically give better acoustic performance. 🛽 8-29 shows 150° commutation with 30° window size.

图 8-29. 150° commutation

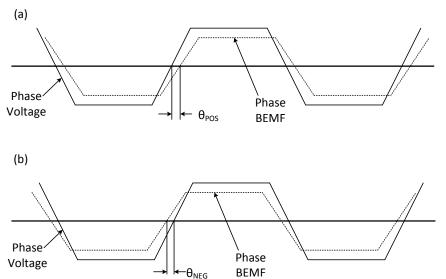
备注

Different modulation modes are supported only with 120° commutation; variable commutation uses mixed modulation mode only.

8.3.10.3 Lead Angle Control

To achieve the best efficiency, it is often desirable to control the drive state of the motor so that the motor phase current is aligned with the motor BEMF voltage. MCT8317A provides the option to advance or delay the phase voltage from the commutation point by adjusting the lead angle. The lead angle can be adjusted to obtain optimal efficiency. This can be accomplished by operating the motor at constant speed and load conditions and adjusting the lead angle (LD_ANGLE) until the minimum current is achieved. The MCT8317A has the capability to apply both positive and negative lead angle (by configuring LD_ANGLE_POLARITY) as shown in 🕅 8-30

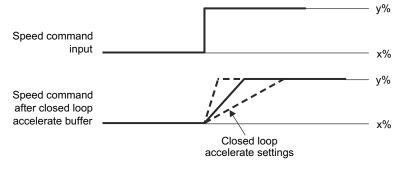
Lead angle can be calculated by $\{LD_ANGLE \times 0.12\}^{\circ}$; for example, if the LD_ANGLE is 0x1E and LD_ANGLE_POLARITY is 1b, then a lead angle of +3.6°(advance) is applied. If LD_ANGLE_POLARITY is 0b, then a lead angle of -3.6°(delay) is applied.


备注

For 120° commutation, the negative lead angle is limited to -20°; any lead angle lower than that will be clamped to -20°.

For variable commutation, negative lead angle is not supported and positive lead angle is limited to $+15^{\circ}$. Anything configured higher than $+15^{\circ}$ or lower than 0° will be clamped to 15° and 0° respectively.

ADVANCE INFORMATION



8.3.10.4 Closed loop accelerate

To prevent sudden changes in the torque applied to the motor which could result in acoustic noise, the MCT8317A device provides the option of limiting the maximum rate at which the speed command can change. The closed loop acceleration rate parameter sets the maximum rate at which the speed command changes (shown in $\mathbb{8}$ 8-31). In the MCT8317A, closed loop acceleration rate is configured through CL_ACC.

8.3.11 Speed Loop

MCT8317A has a speed loop which can be used to maintain constant speed under varying operating conditions. Speed loop is enabled by setting CLOSED_LOOP_MODE to 01b. K_p and K_i coefficients are configured through SPD_POWER_KP and SPD_POWER_KI. The output of speed loop (SPEED_PI_OUT) is used to generate the DUTY_OUT (see 888.8). The PI controller output upper (V_{MAX}) and lower bound (V_{MIN}) saturation limits are configured through SPD_POWER_V_MAX and SPD_POWER_V_MIN respectively. When output of the speed loop saturates, the integrator is disabled to prevent integral wind-up. The speed loop PI controller is as in 8-32.

SPEED_REF is derived from duty command input and maximum motor speed (MAX_SPEED) configured by user (see 方程式 3). In speed loop mode, minimum SPEED_REF is set by MIN_DUTY * MAX_SPEED.

```
SPEED_REF = DUTY CMD * MAX_SPEED
```

(3)

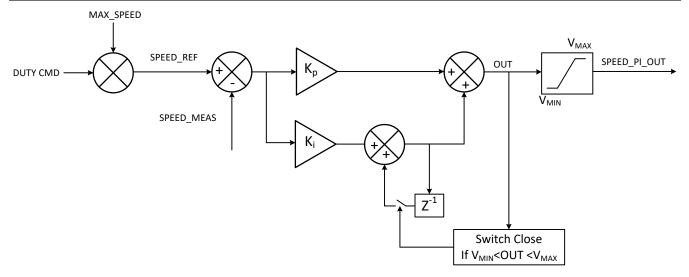


图 8-32. Speed Loop

8.3.12 Input Power Regulation

MCT8317A provides an option of regulating the (input) power instead of motor speed - this input power regulation can be done in two modes, namely, closed loop power control and power limit control. Input power regulation (instead of motor speed) mode is selected by setting CLOSED_LOOP_MODE to 10b. This should be accompanied by setting CONST_POWER_MODE to 01b for closed loop power control or to 10b for power limit control. In either of the power regulation modes, the maximum power that MCT8317A can draw from the DC input supply is set by MAX_POWER - the power reference (POWER_REF in 图 8-33) varies as function of the duty command input (DUTY_CMD) and MAX_POWER as given by 方程式 4. The hysteresis band for the power reference is set by CONST_POWER_LIMIT_HYST. In both the power regulation modes, the minimum power reference is set by MIN_DUTY x MAX_POWER.

POWER_REF = DUTY_CMD x MAX_POWER

In both the power regulation modes, MCT8317A uses the same PI controller parameters as in the speed loop mode. Kp and Ki coefficients are configured through SPD_POWER_KP and SPD_POWER_KI. The PI controller output upper (V_{MAX}) and lower bound (V_{MIN}) saturation limits are configured through SPD_POWER_V_MAX and SPD_POWER_V_MIN respectively. The key difference between closed loop power control and power limit control is in the when the PI controller decides the DUTY OUT (see 8-8) applied to FETs. In closed loop power control, DUTY OUT is always equal to POWER PI OUT from the PI controller output in 8 8-33. However, in power limit control, the PI controller decides the DUTY OUT only if POWER MEAS > POWER_REF CONST POWER LIMIT HYST. POWER MEAS + lf < POWER REF CONST POWER LIMIT HYST, the PI controller is not used and DUTY_OUT is equal to DUTY_CMD. Essentially, in closed loop power control, input power is always actively regulated to POWER_REF whereas, in power limit control, input power is only limited to POWER REF and not actively regulated to POWER REF. When output of the power PI loop saturates, the integrator is disabled to prevent integral wind-up.

(4)

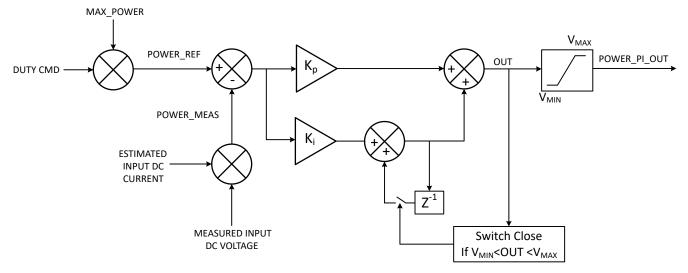
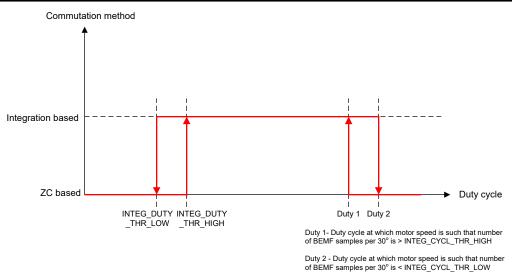


图 8-33. Power Regulation

8.3.13 Anti-Voltage Surge (AVS)

When a motor is driven, energy is transferred from the power supply into the motor. Some of this energy is stored in the form of inductive and mechanical energy. If the speed command suddenly drops such that the BEMF voltage generated by the motor is greater than the voltage that is applied to the motor, then the mechanical energy of the motor is returned to the power supply and the V_M voltage surges. The AVS feature works to prevent this voltage surge on V_M and can be enabled by setting AVS_EN to 1b. AVS can be disabled by setting AVS_EN to 0b. When AVS is disabled, the deceleration rate is configured through CL_DEC_CONFIG


8.3.14 Output PWM Switching Frequency


MCT8317A provides the option to configure the output PWM switching frequency of the MOSFETs through PWM_FREQ_OUT. PWM_FREQ_OUT has range of 5-100 kHz. In order to select optimal output PWM switching frequency, user has to make tradeoff between the current ripple and the switching losses. Generally, motors having lower L/R ratio require higher PWM switching frequency to reduce current ripple.

8.3.15 Fast Start-up (< 50 ms)

MCT8317A has the capability to accelerate a motor from 0 to 100% speed within 50 ms. This will only work on low inertia motors which are capable of this level of acceleration. In order to achieve fast start-up, the commutation instant detection needs to be configured to hybrid mode by setting INTEG_ZC_METHOD to 1b. In the hybrid mode, the commutation instant is determined by using back-EMF integration at low-medium speeds and by using built-in comparators (BEMF zero crossing) at higher speeds. MCT8317A automatically transitions between back-EMF integration and comparator based commutation depending on the motor speed as shown in [8] 8-34. The duty cycles for commutation method transition at lower speeds are directly configured by INTEG_DUTY_THR_LOW and INTEG_DUTY_THR_HIGH and at higher speeds are indirectly configured by INTEG_CYC_THR_LOW and INTEG_CYC_THR_HIGH. These duty cycles should be configured to provide a sufficient hysteresis band to avoid repeated commutation method transitions near threshold duty cycles. The BEMF threshold values used to determine the commutation instant in the back-EMF integration method are configured by BEMF_THRESHOLD1 and BEMF_THRESHOLD2.

8.3.15.1 BEMF Threshold

S-35 shows the three-phase voltages during 120° trapezoidal operation. It is seen that one of the phases will always be floating within a 60° commutation interval and MCT8317A integrates this floating phase voltage (which denotes the motor back-EMF) in the back-EMF integration method to detect the next commutation instant. The floating phase voltage can either be increasing or decreasing and the algorithm starts the integration after the zero cross detection in order to eliminate integration errors due to variable degauss time. The floating phase voltage is periodically sampled (after zero cross) and added (discrete form of integration). BEMF threshold (BEMF_THRESHOLD1 and BEMF_THRESHOLD2) value is set such that the integral value of the floating phase voltage crosses the BEMF_THRESHOLD1 or BEMF_THRESHOLD2 value at (or very near) to the commutation instant. BEMF_THRESHOLD1 is the threshold for rising floating phase voltage and BEMF_THRESHOLD2 is the threshold for falling floating phase voltage. If BEMF_THRESHOLD2 is set to 0, then BEMF_THRESHOLD1 is used as the threshold for both rising and falling floating phase voltage.

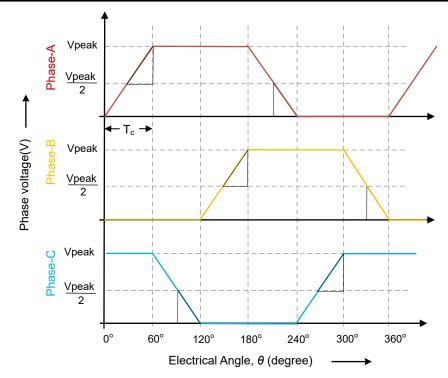
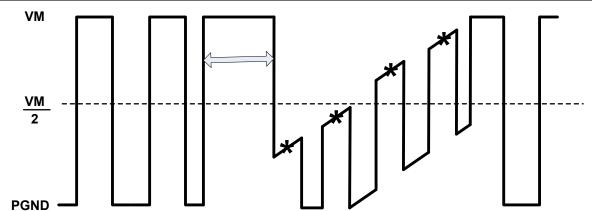
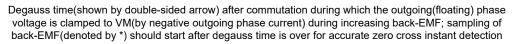


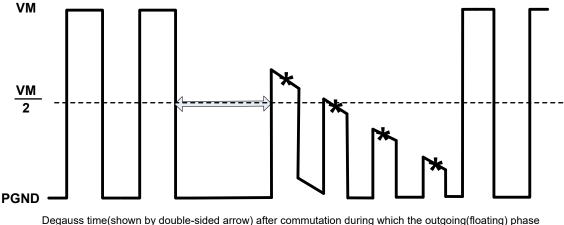
图 8-35. Back-EMF integration using floating phase voltage

In 图 8-35, Vpeak is the peak-peak value of the back-EMF, Vpeak/2 denotes the zero cross of the back-EMF and Tc is the commutation interval or time period of the 60° window. The highlighted triangle in each 60° window is the integral value of back-EMF used by the algorithm to determine the commutation instant. This integral value, which can be approximated as the area of the highlighted triangle, is given by 方程式 5.

(5)


See for an example application on setting the BEMF threshold.


8.3.15.2 Dynamic Degauss


In MCT8317A, the degauss time can be dynamically computed after the commutation for a precise detection of the zero crossing instant. This is done by enabling the dynamic degauss feature (DYN_DEGAUSS_EN is set to 1b). This feature allows the motor control algorithm to capture the zero crossing instant after the outgoing (floating) phase voltage is completely settled; that is, when the outgoing phase current has decayed to zero and the outgoing (floating) phase voltage is not clamped (to either VM or PGND) and represents the true back-EMF. This accurate measurement of zero cross instant allows fast acceleration of the motors (< 50ms) using MCT8317A.

ADVANCE INFORMATION

Degauss time(shown by double-sided arrow) after commutation during which the outgoing(floating) phase voltage is clamped to PGND(by positive outgoing phase current) during decreasing back-EMF; sampling of back-EMF(denoted by *) should start after degauss time is over for accurate zero cross instant detection

8.3.16 Fast Deceleration

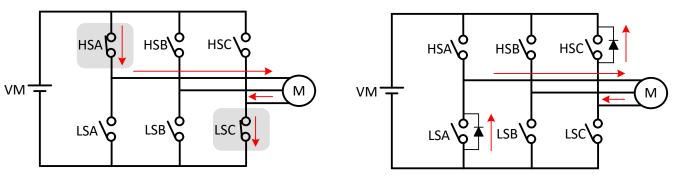
MCT8317A has the capability to decelerate a motor quickly (100% to 10% speed reduction within tens of ms) without pumping energy back into the input DC supply using the fast deceleration feature in conjunction with the AVS feature. The fast deceleration feature can be enabled by setting FAST_DECEL_EN to 1b; AVS_EN should be set to 1b to prevent energy pump-back into the input DC supply. This combination enables a linear braking effect resulting in a fast and smooth speed reduction without energy pump-back into the DC input supply. This feature combination can also be used during reverse drive (see Reverse Drive) or motor stop (see Active Spin-Down) to reduce the motor speed quickly without energy pump-back into the DC input supply.

The deceleration time can be controlled by appropriately configuring the current limit during deceleration, FAST_DECEL_CURR_LIM. A higher current limit results in a lower deceleration time and vice-versa. A higher than necessary current limit setting may result in motor stall faults, at low target speeds, due to excessive braking torque. This can also lead to higher losses in MCT8317A, especially in repeated acceleration-deceleration cycles. Therefore, the FAST_DECEL_CURR_LIM should be chosen appropriately, so as to decelerate within the required time without resulting in stall faults or overheating.

FAST_BRK_DELTA is used to configure the target speed hysteresis band to exit the fast deceleration mode and re-enter motoring mode when motor reaches the target speed. For example, if FAST_BRK_DELTA is set to 1%, the fast deceleration is deemed complete when motor speed reaches within 1% of target speed. Setting a higher

value for FAST_BRK_DELTA may eliminate motor stall faults, especially when high FAST_DECEL_CURR_LIM values are used. Setting a higher value for FAST_BRK_DETLA will also result in higher speed error between target speed and motor speed at the end of deceleration mode - motor will eventually reach the target speed once motoring mode is resumed. FAST_DECEL_CURR_LIM and FAST_BRK_DELTA should be configured in tandem to optimize between lower deceleration time and reliable (no stall faults) deceleration profile.

FAST_DEC_DUTY_THR configures the speed below which fast deceleration will be implemented. For example, if FAST_DEC_DUTY_THR is set to 70%, any deceleration from speeds above 70% will not use fast deceleration until the speed goes below 70%. FAST_DEC_DUTY_WIN is used to set the minimum deceleration window (initial speed - target speed) below which fast deceleration will not be implemented. For example, if FAST_DEC_DUTY_WIN is set to 15% and 50%->40% deceleration command is received, fast deceleration is not used to reduce the speed from 50% to 40% since the deceleration window (10%) is smaller than FAST_DEC_DUTY_WIN.


MCT8317A provides a dynamic current limit option during fast deceleration to improve the stability of fast deceleration when braking to very low speeds; using this feature the current limit during fast deceleration can be reduced as the motor speed decreases. This feature can be enabled by setting DYNAMIC_BRK_CURR to 1b. The current limit at the start of fast deceleration (at FAST_DEC_DUTY_THR) is configured by FAST_DECEL_CURR_LIM and the current limit at zero speed is configured by DYN_BRK_CURR_LOW_LIM; the current limit during fast deceleration varies linearly with speed between these two operating points when dynamic current limit is enabled. If dynamic current limit is disabled, current limit during fast deceleration stays constant and is configured by FAST_DECEL_CURR_LIM.

8.3.17 Motor Stop Options

The MCT8317A provides different options for stopping the motor which can be configured by MTR_STOP.

8.3.17.1 Coast (Hi-Z) Mode

Coast (Hi-Z) mode is configured by setting MTR_STOP to 000b. When motor stop command is received, the MCT8317A will transition into a high impedance (Hi-Z) state by turning off all MOSFETs. When the MCT8317A transitions from driving the motor into a Hi-Z state, the inductive current in the motor windings continues to flow and the energy returns to the power supply through the body diodes in the MOSFET output stage (see example 8-37).

Driving State

High-Impedance State

图 8-37. Coast (Hi-Z) Mode

In this example, current is applied to the motor through the high-side phase-A MOSFET (HSA) and returned through the low-side phase-C MOSFET (LSC). When motor stop command is received all 6 MOSFETs transition to Hi-Z state and the inductive energy returns to supply through body diodes of MOSFETs LSA and HSC.

8.3.17.2 Recirculation Mode

Recirculation mode is configured by setting MTR_STOP to 001b. In order to prevent the inductive energy from returning to DC input supply during motor stop, the MCT8317A allows current to circulate within the MOSFETs by selectively turning OFF some of the active (ON) MOSFETs for a certain time (auto calculated recirculation

time to allow the inductive current to decay to zero) before transitioning into Hi-Z by turning OFF the remaining MOSFETs.

If high-side modulation was active, prior to motor stop command, then the high-side MOSFET is turned OFF on receiving motor stop command and the current recirculation takes place through low-side MOSFET (see example 8 8-38). Once the recirculation time lapses, the low-side MOSFET also turns OFF and all MOSFETs are in Hi-Z state.

Driving State

Low-Side Recirculation Mode

图 8-38. Low-Side Recirculation

If low-side modulation was active, prior to motor stop command, then the low-side MOSFET is turned OFF on receiving motor stop command and the current recirculation takes place through high-side MOSFET (see example 😤 8-39). Once the recirculation time lapses, the high-side MOSFET also turns OFF and all MOSFETs are in Hi-Z state

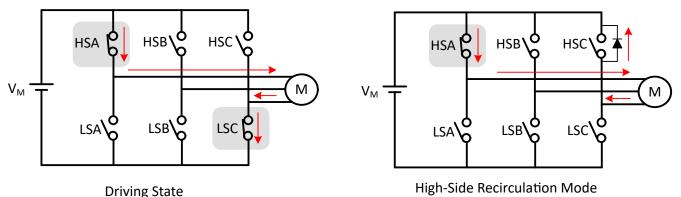
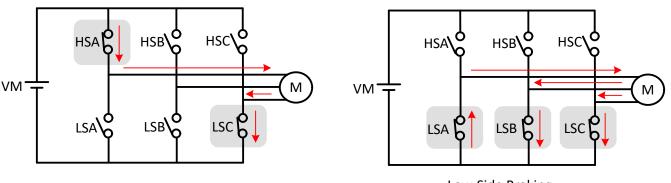



图 8-39. High-Side Recirculation

8.3.17.3 Low-Side Braking

Low-side braking mode is configured by setting MTR_STOP to 010b. When a motor stop command is received, the output speed is reduced to a value defined by ACT_SPIN_BRK_THR prior to turning all low-side MOSFETs ON (see example 8 8-40) for a time configured by MTR_STOP_BRK_TIME. If the motor speed is below ACT_SPIN_BRK_THR prior to receiving stop command, then the MCT8317A transitions directly into the brake state. After applying the brake for MTR_STOP_BRK_TIME, the MCT8317A transitions into the Hi-Z state by turning OFF all MOSFETs.

Driving State

Low-Side Braking

图 8-40. Low-Side Braking

The MCT8317A can also enter low-side braking through BRAKE pin input. When BRAKE pin is pulled to HIGH state, the output speed is reduced to a value defined by BRAKE_DUTY_THRESHOLD prior to turning all low-side MOSFETs ON. In this case, MCT8317A stays in low-side brake state till BRAKE pin changes to LOW state.

8.3.17.4 High-Side Braking

High-side braking mode is configured by setting MTR_STOP to 011b. When a motor stop command is received, the output speed is reduced to a value defined by ACT_SPIN_BRK_THR prior to turning all high-side MOSFETs ON (see example 🔀 8-41) for a time configured by MTR_STOP_BRK_TIME. If the motor speed is below ACT_SPIN_BRK_THR prior to receiving stop command, then the MCT8317A transitions directly into the brake state. After applying the brake for MTR_STOP_BRK_TIME, the MCT8317A transitions into Hi-Z state by turning OFF all MOSFETs.

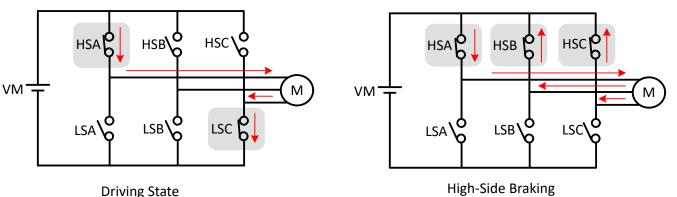
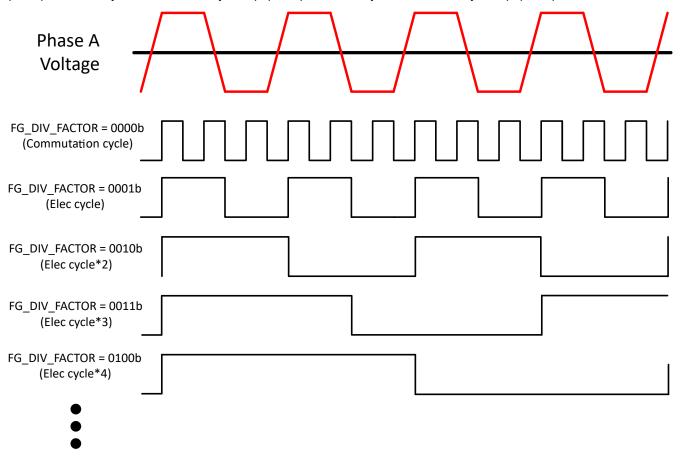


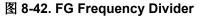
图 8-41. High-Side Braking

8.3.17.5 Active Spin-Down

Active spin down mode is configured by setting MTR_STOP to 100b. When motor stop command is received, MCT8317A reduces duty cycle to ACT_SPIN_BRK_THR and then transitions to Hi-Z state by turning all MOSFETs OFF. The advantage of this mode is that by reducing duty cycle, the motor is decelerated to a lower speed thereby reducing the phase currents before entering Hi-Z. Now, when motor transitions into Hi-Z state, the energy transfer to power supply is reduced. The threshold ACT_SPIN_BRK_THR needs to configured high enough for MCT8317A to not lose synchronization with the motor.

8.3.18 FG Configuration


The MCT8317A provides information about the motor speed through the Frequency Generate (FG) pin. In MCT8317A, the FG pin output is configured through FG_CONFIG. When FG_CONFIG is configured to 1b, the FG output is active as long as the MCT8317A is driving the motor. When FG_CONFIG is configured to 0b, the MCT8317A provides an FG output until the motor back-EMF falls below FG_BEMF_THR.

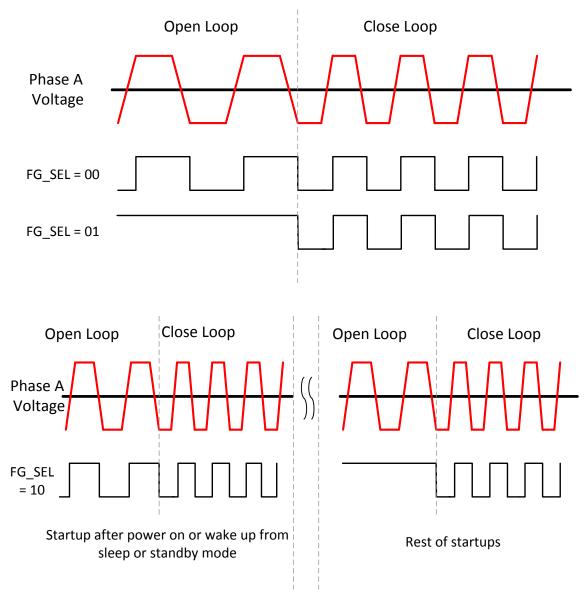


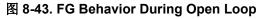
8.3.18.1 FG Output Frequency

The FG output frequency can be configured by FG_DIV_FACTOR. In MCT8317A, FG toggles once every commutation cycle if FG_DIV_FACTOR is set to 0000b. Many applications require the FG output to provide a pulse for every mechanical rotation of the motor. Different FG_DIV_FACTOR configurations can accomplish this for 2-pole up to 30-pole motors.

8-42 shows the FG output when MCT8317A has been configured to provide FG pulses once every commutation cycle (electrical cycle/3), once every electrical cycle (2 poles), once every two electrical cycle (4 poles), once every three electrical cycles (6 poles), once every four electrical cycles (8 poles), and so on.

8.3.18.2 FG Open-Loop and Lock Behavior


During closed loop operation, the driving speed (FG output frequency) and the actual motor speed are synchronized. During open-loop operation, however, FG may not reflect the actual motor speed. During motor-lock condition, the FG output is driven high.


The MCT8317A provides three options for controlling the FG output during open loop, as shown in $\mathbb{8}$ 8-43. The selection of these options is configured through FG_SEL.

If FG_SEL is set to,

- 00b: When in open loop, the FG output is based on the driving frequency.
- 01b: When in open loop, the FG output will be driven high.
- 10b: The FG output will reflect the driving frequency during open loop operation in the first motor start-up cycle after power-on, sleep/standby; FG will be held high during open loop operation in subsequent start-up cycles.

8.3.19 Protections

The MCT8317A is protected from a host of fault events including motor lock, VM undervoltage, AVDD undervoltage, buck undervoltage, charge pump undervoltage, overtemperature and overcurrent events. 表 8-1 summarizes the response, recovery modes, power stage status, reporting mechanism for different faults.

FAULT	CONDITION	CONFIGURATION	REPORT	PRE_DRIVER	DIGITAL	RECOVERY			
VM undervoltage (VM_UV)	V _{VM} < V _{UVLO (falling)}	_	nFAULT and GATE_DRIVER_FA ULT_STATUS registe	Hi-Z	Active	Automatic: TRETRY and V _{VM} > V _{UVLO (rising)}			
VIN_AVDD under voltage (VIN_AVDD_UV)	V _{VIN_AVDD} < V _{VIN_AVDD_UV} (falling)	_	_	Hi-Z	Disabled	Automatic: V _{VIN_AVDD} > V _{VIN_AVDD_UV} (rising)			
AVDD undervoltage	V _{AVDD} < V _{AVDD_UV} (falling)	_	_	Hi-Z	Disabled	Automatic: V _{AVDD} > V _{AVDD_UV (rising)}			
Charge pump undervoltage (CP_UV)	V _{CP} < V _{CPUV (falling)}	_	nFAULT and GATE_DRIVER_FA ULT_STATUS register	Hi-Z	Active	Automatic: TRETRY and V _{CP} > V _{CPUV (rising)}			

表 8-1. Fault Action and Response

		表 8-1. Fault A				7500/57/			
FAULT	CONDITION	CONFIGURATION	REPORT	PRE_DRIVER	DIGITAL	RECOVERY			
Over Voltage Protection (OVP)	V_{VM} > V_{OVP} (rising)	_	nFAULT and GATE_DRIVER_FA ULT_STATUS register	Hi-Z	Active	Automatic: TRETRY and V _{VM} < V _{OVP (falling)}			
		OCP_MODE = 000b	nFAULT and GATE_DRIVER_FA ULT_STATUS register	Hi-Z	Active	Automatic : TRETRY			
Overcurrent Protection (OCP)	I _{PHASE} > I _{OCP}	OCP_MODE = 010b	nFAULT and GATE_DRIVER_FA ULT_STATUS register	Hi-Z	Active	Latched: CLR_FLT			
		OCP_MODE = 011b	nFAULT and GATE_DRIVER_FA ULT_STATUS register	Active	Active	No action			
		OCP_MODE = 111b	None	Active	Active	No action			
		MTR_LCK_MODE =	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Latched: CLR_FLT			
					MTR_LCK_MODE = 0001b	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Latched: CLR_FLT
		MTR_LCK_MODE = 0010b	nFAULT and CONTROLLER_FA ULT_STATUS register	High side brake	Active	Latched: CLR_FLT			
		MTR_LCK_MODE = 0011b	nFAULT and CONTROLLER_FA ULT_STATUS register	Low side brake	Active	Latched: CLR_FLT			
Motor Lock (MTR_LCK)	Motor lock: Abnormal Speed; No Motor Lock;	Speed; No Motor Lock;		Speed; No Motor Lock;	MTR_LCK_MODE = 0100b	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Retry: t _{LCK_RETRY}
		MTR_LCK_MODE = 0101b	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Retry: [†] LCK_RETRY			
		MTR_LCK_MODE = 0110b	nFAULT and CONTROLLER_FA ULT_STATUS register	High side brake	Active	Retry: t _{LCK_RETRY}			
		MTR_LCK_MODE = 0111b	nFAULT and CONTROLLER_FA ULT_STATUS register	Low side brake	Active	Retry: t _{LCK_RETRY}			
		MTR_LCK_MODE = 1000b	CONTROLLER_FA ULT_STATUS register	Active	Active	No action			
		MTR_LCK_MODE = 1xx1b	None	Active	Active	No action			

表 8-1. Fault Action and Response (continued)

MCT8317	4
ZHCSQ32 -	JANUARY 2023

表 8-1. Fault Action and Response (continued)								
FAULT	CONDITION	CONFIGURATION	REPORT	PRE_DRIVER	DIGITAL	RECOVERY		
		CBC_ILIMIT_MODE =	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Automatic: Next PWM cycle		
		CBC_ILIMIT_MODE = 0001b	None	Recirculation	Active	Automatic: Next PWM cycle		
		CBC_ILIMIT_MODE = 0010b	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Automatic: V _{SOX} < ILIMIT		
Cycle by Cycle Current Limit	V _{SOX} > CBC_ILIMIT	CBC_ILIMIT_MODE = 0011b	None	Recirculation	Active	Automatic: V _{SOX} < ILIMIT		
(CBC_ILIMIT)		CBC_ILIMIT_MODE = 0100b	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Automatic: PWM cycle > CBC_RETRY_PWM_CYC		
		CBC_ILIMIT_MODE = 0101b	None	Recirculation	Active	Automatic: PWM cycle > CBC_RETRY_PWM_CYC		
		CBC_ILIMIT_MODE= 0110b	CONTROLLER_FA ULT_STATUS register	Active	Active	No action		
		CBC_ILIMIT_MODE = 0111b, 1xxxb	None	Active	Active	No action		
		LOCK_ILIMIT_MODE =	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Latched: CLR_FLT		
	V _{SOX} > LOCK_ILIMIT	LOCK_ILIMIT_MODE = 0001b	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Latched: CLR_FLT		
		LOCK_ILIMIT_MODE = 0010b	nFAULT and CONTROLLER_FA ULT_STATUS register	High-side brake	Active	Latched: CLR_FLT		
		LOCK_ILIMIT_MODE = 0011b	nFAULT and CONTROLLER_FA ULT_STATUS register	Low-side brake	Active	Latched: CLR_FLT		
Lock-Detection Current Limit (LOCK_ILIMIT)		LOCK_ILIMIT_MODE = 0100b	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Retry: ^t LCK_RETRY		
		LOCK_ILIMIT_MODE = 0101b	nFAULT and CONTROLLER_FA ULT_STATUS register	Recirculation	Active	Retry: ^t LCK_RETRY		
		LOCK_ILIMIT_MODE = 0110b	nFAULT and CONTROLLER_FA ULT_STATUS register	High-side brake	Active	Retry: ^t LCK_RETRY		
		LOCK_ILIMIT_MODE = 0111b	nFAULT and CONTROLLER_FA ULT_STATUS register	Low-side brake	Active	Retry: ¹ LCK_RETRY		
		LOCK_ILIMIT_MODE= 1000b	CONTROLLER_FA ULT_STATUS register	Active	Active	No action		
		LOCK_ILIMIT_MODE = 1xx1b	None	Active	Active	No action		
IPD Timeout Fault (IPD_T1_FAULT and IPD_T2_FAULT)	IPD TIME > 500ms (approx), during IPD current ramp up or ramp down	_	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Latched: CLR_FLT		
IPD Frequency Fault (IPD_FREQ_FAULT)	IPD pulse before the current decay in previous IPD	_	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Latched: CLR_FLT		
Over temperature warning (OTW)	T _J > T _{OTW}	_	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Automatic: T _J < T _{OTW} ⁻ T _{OTW_HYS}		

表 8-1. Fault Action and Response (continued)

	表 8-1. Fault Action and Response (continued)								
FAULT	CONDITION	CONFIGURATION	REPORT	PRE_DRIVER	DIGITAL	RECOVERY			
Over temperature shutdown (OTS)	T _J > T _{OTS}	_	nFAULT and CONTROLLER_FA ULT_STATUS register	Hi-Z	Active	Automatic: T _J < T _{OTS} - T _{OTS_HYS}			

8.3.19.1 VM Supply Undervoltage Lockout

If at any time the voltage on VM pin falls below the VM under voltage lockout falling threshold (V_{VM UV (falling)}), driven low, DRIVER FAULT VM UV FETs are in Hi-Z, nFAULT pin is and bits in GATE DRIVER FAULT STATUS register are set to 1b. Normal operation resumes automatically (pre-driver operation and the nFAULT pin is released) once the retry time (TRETRY) lapses after VM voltage is above the VM under voltage lockout rising threshold (V_{VM UV} (rising)). The DRIVER_FAULT, VM_UV bits stay set to 1b until a clear fault command is issued by writing 1b to the CLR FLT bit.

8.3.19.2 VIN_AVDD Undervoltage Lockout (VIN_AVDD_UV)

If at any time the voltage on the VIN_AVDD pin falls lower than the $V_{VIN_AVDD_UV}$ (falling) threshold, all the integrated FETs, charge-pump and digital logic controller are disabled. Device operation resumes when VIN_AVDD voltage rises above the $V_{VIN_AVDD_UV}$ (rising) threshold.

8.3.19.3 AVDD Undervoltage Lockout (AVDD_UV)

If at any time the voltage on the AVDD pin falls lower than the V_{AVDD_UV} (falling) threshold, all the integrated FETs, charge-pump and digital logic controller are disabled. Since internal circuitry in MCT8317A is powered through the AVDD regulator, MCT8317A goes into reset state whenever an AVDD UV event occurs. Device operation resumes when AVDD voltage rises above the V_{AVDD_UV} (rising) threshold.

8.3.19.4 Charge Pump Undervoltage Lockout (CP_UV)

If at any time the voltage on CP pin falls below the CP under voltage falling threshold (V_{CP_UV} (falling)), FETs are in Hi-Z, charge pump is disabled, nFAULT pin is driven low, DRIVER_FAULT and CP_UV bits in GATE_DRIVER_FAULT_STATUS register are set to 1b. Normal operation resumes automatically (pre-driver, charge pump operation and the nFAULT pin is released) once the retry time (TRETRY) lapses after CP voltage is above the CP under voltage rising threshold (V_{CP_UV} (rising)). The DRIVER_FAULT, CP_UV bits stay set to 1b until a clear fault command is issued by writing 1b to CLR_FLT bit.

8.3.19.5 Overvoltage Protection (OVP)

If at any time input supply voltage on the VM pins rises higher lower than the $V_{OVP (rising)}$ threshold voltage, FETs are in Hi-Z and the nFAULT pin is driven low. The DRIVER_FAULT and OVP bits are set to 1b in the GATE_DRIVER_FAULT_STATUS register. Normal operation resumes (driver operation and the nFAULT pin is released) once the retry time (TRETRY) lapses after VM voltage is below the VM over voltage falling threshold ($V_{OVP (falling)}$). The DRIVER_FAULT and OVP bits stay set to 1b until cleared by writing to the CLR_FLT bit.

8.3.19.6 Overcurrent Protection (OCP)

MOSFET overcurrent event is sensed by monitoring the current flowing through FETs. If the current across a FET exceeds the I_{OCP} threshold for longer than the t_{OCP} deglitch time, an OCP event is recognized and action is taken according to the OCP_MODE bit. The I_{OCP} threshold is set through the OCP_LVL, the t_{OCP}_{DEG} is set through the OCP_DEG and the OCP_MODE bit can operate in four different modes: OCP latched shutdown, OCP automatic retry, OCP report only and OCP disabled.

8.3.19.6.1 OCP Latched Shutdown (OCP_MODE = 010b)

When an OCP event happens in this mode, all MOSFETs are disabled and the nFAULT pin is driven low. The DRIVER_FAULT and OCP bits are set to 1b in the GATE_DRIVER_FAULT_STATUS registers. Normal operation resumes (driver operation and the nFAULT pin is released) when the OCP condition clears and a clear fault command is issued by writing 1b to the CLR_FLT bit.

ADVANCE INFORMATION

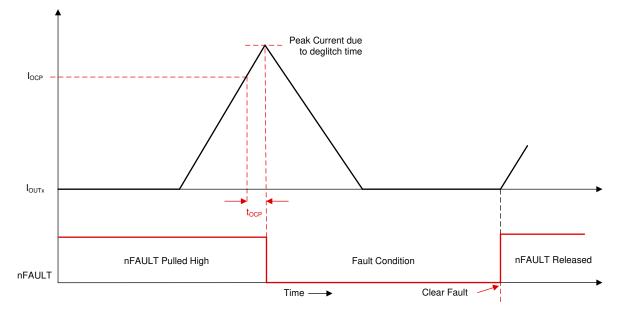
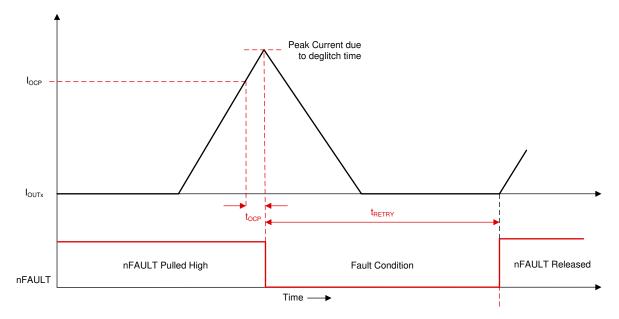



图 8-44. Overcurrent Protection - Latched Shutdown Mode

8.3.19.6.2 OCP Automatic Retry (OCP_MODE = 000b)

When an OCP event happens in this mode, all the FETs are disabled and the nFAULT pin is driven low. The DRIVER_FAULT and OCP bits are set to 1b in the GATE_DRIVER_FAULT_STATUS register. Normal operation resumes automatically (gate driver operation and the nFAULT pin is released) after the TRETRY time lapses. The DRIVER_FAULT, OCP and corresponding FET's OCP bits are set to 1b until cleared through the CLR_FLT bit.

8.3.19.6.3 OCP Report Only (OCP_MODE = 011b)

No protective action is taken when an OCP event happens in this mode. The overcurrent event is reported by setting the DRIVER_FAULT and OCP bits to 1b in the GATE_DRIVER_FAULT_STATUS register. The device continues to operate as usual. The external controller manages the overcurrent condition by acting appropriately. The reporting clears when the OCP condition clears and a clear fault command is issued by writing 1b to the CLR_FLT bit.

8.3.19.6.4 OCP Disabled (OCP_MODE = 111b)

No action is taken and no reporting (nFAULT or status register bits) is done when an OCP event happens in this mode.

8.3.19.7 Cycle-by-Cycle (CBC) Current Limit (CBC_ILIMIT)

Cycle-by-cycle (CBC) current limit provides a means of controlling the amount of current delivered to the motor. This is useful when the system must limit the amount of current pulled from the power supply during motor operation. The CBC current limit limits the current applied to the motor from exceeding the configured threshold. CBC current limit functionality is achieved by connecting the output of current sense amplifier V_{SOX} to a hardware comparator. If the voltage at output of current sense amplifier exceeds the CBC_ILIMIT threshold, a CBC_ILIMIT event is recognized and action is taken according to CBC_ILIMIT_MODE. Total delay in reaction to this event is dependent on the current sense amplifier gain and the comparator delay. CBC current limit in closed loop is set through CBC_ILIMIT while configuration of OL_ILIMIT_CONFIG sets the CBC current limit in open loop operation. Different modes can be configured through CBC_ILIMIT_MODE: CBC_ILIMIT automatic recovery next PWM cycle, CBC_ILIMIT automatic recovery threshold based, CBC_ILIMIT automatic recovery number of PWM cycles based, CBC_ILIMIT report only, CBC_ILIMIT disabled.

8.3.19.7.1 CBC_ILIMIT Automatic Recovery next PWM Cycle (CBC_ILIMIT_MODE = 000xb)

When a CBC_ILIMIT event happens in this mode, MCT8317A stops driving the FETs using recirculation mode to prevent the inductive energy from entering the DC input supply. The CBC_ILIMIT bit is set to 1b in the fault status registers. Normal operation resumes at the start of next PWM cycle and CBC_ILIMIT bit is reset to 0b. The status of CONTROLLER_FAULT bit and nFAULT pin will be determined by CBC_ILIMIT_MODE. When CBC_ILIMIT_MODE is 0000b, CONTROLLER_FAULT bit is set to 1b and nFAULT pin driven low until next PWM cycle. When CBC_ILIMIT_MODE is 0001b, CONTROLLER_FAULT bit is not set to 1b and nFAULT is not driven low.

8.3.19.7.2 CBC_ILIMIT Automatic Recovery Threshold Based (CBC_ILIMIT_MODE = 001xb)

When a CBC_ILIMIT event happens in this mode, MCT8317A stops driving the FETs using recirculation mode to prevent the inductive energy from entering the DC input supply. The CBC_ILIMIT bit is set to 1b in the status registers. Normal operation resumes after V_{SOX} falls below CBC_ILIMIT threshold and CBC_ILIMIT bit is set to 0b. The status of CONTROLLER_FAULT bit and nFAULT pin will be determined by CBC_ILIMIT_MODE. When CBC_ILIMIT_MODE is 0010b, CONTROLLER_FAULT bit is set to 1b and nFAULT pin driven low until V_{SOX} falls below CBC_ILIMIT threshold. When CBC_ILIMIT_MODE is 0011b, CONTROLLER_FAULT bit is not set to 1b and nFAULT pin driven low.

8.3.19.7.3 CBC_ILIMIT Automatic Recovery after 'n' PWM Cycles (CBC_ILIMIT_MODE = 010xb)

When a CBC_ILIMIT event happens in this mode, MCT8317A stops driving the FETs using recirculation mode to prevent the inductive energy from entering the DC input supply. The CBC_ILIMIT bit is set to 1b in the fault status registers. Normal operation resumes after (CBC_RETRY_PWM_CYC +1) PWM cycles and CBC_ILIMIT bit is set to 0b. The status of CONTROLLER_FAULT bit and nFAULT pin will be determined by CBC_ILIMIT_MODE. When CBC_ILIMIT_MODE is 0100b, CONTROLLER_FAULT bit is set to1b and nFAULT pin driven low until (CBC_RETRY_PWM_CYC +1) PWM cycles lapse. When CBC_ILIMIT_MODE is 0101b, CONTROLLER_FAULT bit is not set to 1b and nFAULT is not driven low.

8.3.19.7.4 CBC_ILIMIT Report Only (CBC_ILIMIT_MODE = 0110b)

No protective action is taken when a CBC_ILIMIT event happens in this mode. The CBC current limit event is reported by setting the CONTROLLER_FAULT and CBC_ILIMIT bits to 1b in the fault status registers. The gate drivers continue to operate. The external controller manages the overcurrent condition by acting appropriately. The reporting clears when the CBC_ILIMIT condition clears and a clear fault command is issued through the CLR_FLT bit.

8.3.19.7.5 CBC_ILIMIT Disabled (CBC_ILIMIT_MODE = 0111b or 1xxxb)

No action is taken when a CBC_ILIMIT event happens in this mode.

8.3.19.8 Lock Detection Current Limit (LOCK_ILIMIT)

The lock detection current limit function provides a configurable threshold for limiting the current to prevent damage to the system. The MCT8317A continuously monitors the output of the current sense amplifier (CSA) through the ADC. If at any time, the voltage on the output of CSA exceeds LOCK_ILIMIT for a time longer than t_{LCK_ILIMIT} , a LOCK_ILIMIT event is recognized and action is taken according to LOCK_ILIMIT_MODE. The threshold is set through LOCK_ILIMIT, the t_{LCK_ILIMIT} is set through LOCK_ILIMIT_DEG. LOCK_ILIMIT_MODE can be set to four different modes: LOCK_ILIMIT_latched shutdown, LOCK_ILIMIT_automatic retry, LOCK_ILIMIT report only and LOCK_ILIMIT disabled.

8.3.19.8.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)

When a LOCK_ILIMIT event happens in this mode, the status of MOSFETs will be configured by LOCK_ILIMIT_MODE and nFAULT is driven low. Status of MOSFETs during LOCK_ILIMIT:

- LOCK_ILIMIT_MODE = 0000b: All MOSFETs are turned OFF.
- LOCK_ILIMIT_MODE = 0001b: MOSFET which was switching is turned OFF while the one which was conducting stays ON till inductive energy is completely recirculated.
- LOCK_ILIMIT_MODE = 0010b: All high-side MOSFETs are turned ON.
- LOCK_ILIMIT_MODE = 0011b: All low-side MOSFETs are turned ON.

The CONTROLLER_FAULT and LOCK_ILIMIT bits are set to 1b in the fault status registers. Normal operation resumes (gate driver operation and the nFAULT pin is released) when the LOCK_ILIMIT condition clears and a clear fault command is issued through the CLR_FLT bit.

8.3.19.8.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)

When a LOCK_ILIMIT event happens in this mode, the status of MOSFETs will be configured by LOCK_ILIMIT_MODE and nFAULT is driven low. Status of MOSFETs during LOCK_ILIMIT:

- LOCK_ILIMIT_MODE = 0100b: All MOSFETs are turned OFF.
- LOCK_ILIMIT_MODE = 0101b: MOSFET which was switching is turned OFF while the one which was
 conducting stays ON till inductive energy is completely recirculated.
- LOCK ILIMIT MODE = 0110b: All high-side MOSFETs are turned ON
- LOCK ILIMIT MODE = 0111b: All low-side MOSFETs are turned ON

The CONTROLLER_FAULT and LOCK_ILIMIT bits are set to 1b in the fault status registers. Normal operation resumes automatically (gate driver operation and the nFAULT pin is released) after the t_{LCK_RETRY} (configured by LCK_RETRY) time lapses. The CONTROLLER_FAULT and LOCK_ILIMIT bits are reset to 0b after the t_{LCK_RETRY} period expires.

8.3.19.8.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)

No protective action is taken when a LOCK_ILIMIT event happens in this mode. The lock detection current limit event is reported by setting the CONTROLLER_FAULT and LOCK_ILIMIT bits to 1b in the fault status registers. The gate drivers continue to operate. The external controller manages this condition by acting appropriately. The reporting clears when the LOCK_ILIMIT condition clears and a clear fault command is issued through the CLR_FLT bit.

8.3.19.8.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)

No action is taken when a LOCK_ILIMIT event happens in this mode.

8.3.19.9 Over Temperature Warning (OTW)

If the die temperature exceeds the over temperature warning limit (T_{OTW}), all the FETs are disabled and the DRIVER FAULT and nFAULT driven low. In addition. the OTW bits in the pin is GATE DRIVER FAULT STATUS register are set to 1b. Normal operation resumes (driver operation and the nFAULT pin is released) when the die temperature decreases below the hysteresis point of the over temperature warning limit (T_{OTW} - T_{OTW HYS}). The OTW bit stays latched high indicating that a thermal event occurred until a clear fault command is issued through the CLR_FLT bit. This protection feature cannot be disabled.

8.3.19.10 Over Temperature Shutdown (OTS)

If the die temperature exceeds the thermal shutdown limit (T_{OTS}), all the FETs are disabled and the nFAULT pin is driven low. In addition, the DRIVER_FAULT and OTS bits in the GATE_DRIVER_FAULT_STATUS register are set to 1b. Normal operation resumes (driver operation and the nFAULT pin is released) when the die temperature decreases below the hysteresis point of the over temperature shutdown limit ($T_{OTS} - T_{OTS_HYS}$). The OTS bit stays latched high indicating that a thermal event occurred until a clear fault command is issued through the CLR_FLT bit. This protection feature cannot be disabled.

8.3.19.11 Motor Lock (MTR_LCK)

The MCT8317A continuously checks for different motor lock conditions (see Motor Lock Detection) during motor operation. When one of the enabled lock condition happens, a MTR_LCK event is recognized and action is taken according to the MTR_LCK_MODE.

In MCT8317A, all locks can be enabled or disabled individually and retry times can be configured through LCK_RETRY . MTR_LCK_MODE bit can operate in four different modes: MTR_LCK latched shutdown, MTR_LCK automatic retry, MTR_LCK report only and MTR_LCK disabled.

8.3.19.11.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)

When a MTR_LCK event happens in this mode, the status of MOSFETs will be configured by MTR_LCK_MODE and nFAULT is driven low. Status of MOSFETs during MTR_LCK:

- MTR_LCK_MODE = 0000b: All MOSFETs are turned OFF.
- MTR_LCK_MODE = 0001b: MOSFET which was switching is turned OFF while the one which was conducting stays ON till inductive energy is completely recirculated.
- MTR LCK MODE = 0010b: All high-side MOSFETs are turned ON.
- MTR_LCK_MODE = 0011b: All low-side MOSFETs are turned ON.

The CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits are set to 1b in the fault status registers. Normal operation resumes (gate driver operation and the nFAULT pin is released) when the MTR_LCK condition clears and a clear fault command is issued through the CLR_FLT bit.

8.3.19.11.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)

When a MTR_LCK event happens in this mode, the status of MOSFETs will be configured by MTR_LCK_MODE and nFAULT is driven low. Status of MOSFETs during MTR_LCK:

- MTR_LCK_MODE = 0100b: All MOSFETs are turned OFF.
- MTR_LCK_MODE = 0101b: MOSFET which was switching is turned OFF while the one which was conducting stays ON till inductive energy is completely recirculated.
- MTR_LCK_MODE = 0110b: All high-side MOSFETs are turned ON.
- MTR_LCK_MODE = 0111b: All low-side MOSFETs are turned ON.

The CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits are set to 1b in the fault status registers. Normal operation resumes automatically (gate driver operation and the nFAULT pin is released) after the t_{LCK_RETRY} (configured by LCK_RETRY) time lapses. The CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits are reset to 0b after the t_{LCK_RETRY} period expires.

8.3.19.11.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)

No protective action is taken when a MTR_LCK event happens in this mode. The motor lock event is reported by setting the CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits to 1b in the fault status registers. The gate drivers continue to operate. The external controller manages this condition by acting appropriately. The reporting clears when the MTR_LCK condition clears and a clear fault command is issued through the CLR_FLT bit.

8.3.19.11.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)

No action is taken when a MTR_LCK event happens in this mode.

8.3.19.12 Motor Lock Detection

The MCT8317A provides different lock detect mechanisms to determine if the motor is in a locked state. Multiple detection mechanisms work together to ensure the lock condition is detected quickly and reliably. In addition to detecting if there is a locked motor condition, the MCT8317A can also identify and take action if there is no motor connected to the system. Each of the lock detect mechanisms and the no-motor detection can be disabled by their respective register bits (LOCK1/2/3_EN).

8.3.19.12.1 Lock 1: Abnormal Speed (ABN_SPEED)

MCT8317A monitors the speed continuously and at any time the speed exceeds LOCK_ABN_SPEED, an ABN_SPEED lock event is recognized and action is taken according to the MTR_LCK_MODE.

threshold is set through the LOCK_ABN_SPEED register. ABN_SPEED lock can be enabled/disabled by LOCK1 EN.

8.3.19.12.2 Lock 2: Loss of Sync (LOSS_OF_SYNC)

The motor is commutated by detecting the zero crossing on the phase which is in Hi-Z state. If the motor is locked, the back-EMF will disappear and MCT8317A will be not able to detect the zero crossing. If MCT8317A is not able to detect zero crossing for LOSS_SYNC_TIMES number of times, LOSS_OF_SYNC event is recognized and action is taken according to the MTR_LCK_MODE. LOSS_OF_SYNC lock can be enabled/ disabled by LOCK2_EN.

8.3.19.12.3 Lock3: No-Motor Fault (NO_MTR)

The MCT8317A continuously monitors the relevant phase current (low-side phase in the present phase pattern); if the relevant phase current stays below NO_MTR_THR for a time longer than NO_MTR_DEG_TIME, a NO_MTR event is recognized. The response to the NO_MTR event is configured through MTR_LCK_MODE . NO_MTR lock can be enabled/disabled by LOCK3_EN.

8.3.19.13 IPD Faults

The MCT8317A uses 12-bit timers to estimate the time during the current ramp up and ramp down during IPD, when the motor start-up is configured as IPD (MTR_STARTUP is set to 10b). During IPD, the algorithm checks for a successful current ramp-up to IPD_CURR_THR, starting with an IPD clock of 10MHz; if unsuccessful (timer overflow before current reaches IPD_CURR_THR), IPD is repeated with lower frequency clocks of 1MHz, 100kHz, and 10kHz sequentially. If the IPD timer overflows (current does not reach IPD_CURR_THR) with all the four clock frequencies, then the IPD_T1_FAULT gets triggered. Similarly the algorithm check sfor a successful current decay to zero during IPD current ramp down using all the mentioned IPD clock frequencies. If the IPD timer overflows (current does not ramp down to zero) in all the four attempts, then the IPD_T2_FAULT gets triggered.

IPD gives incorrect results if the next IPD pulse is commanded before the complete decay of current due to present IPD pulse. The MCT8317A can generate a fault called IPD_FREQ_FAULT during such a scenario . The IPD_FREQ_FAULT maybe triggerd if the IPD frequency is too high for the IPD current limit and the IPD release mode or if the motor inductance is too high for the IPD frequency, IPD current limit and IPD release mode.

8.4 Device Functional Modes

8.4.1 Functional Modes

8.4.1.1 Sleep Mode

In sleep mode, the MOSFETs, sense amplifiers, buck regulator, charge pump, AVDD LDO regulator and the I²C bus are disabled. The device can be configured to enter sleep (instead of standby) mode by configuring DEV_MODE to 1b. SPEED pin and I²C speed command determine entry and exit from sleep state as described in \pm 8-2.

备注

During power-up and power-down of the device, the nFAULT pin is held low as the internal regulators are disabled. After the regulators have been enabled, the nFAULT pin is automatically released.

8.4.1.2 Standby Mode

The device can be configured to operate as a standby device by setting DEV_MODE to 0b. In standby mode, the charge pump, AVDD LDO, buck regulator and I²C bus are active while the motor is in stopped state waiting for a suitable non-zero speed command. SPEED pin (analog, PWM or frequency based speed input) or I²C speed command (I²C based speed input) determines entry and exit from standby state as described in $\frac{1}{8}$ 8-2.

The thresholds for entering and exiting standby mode in different speed input modes are as follows,

- 1. Analog : V_{EN_SB} = (ZERO_DUTY_THR x V_{ANA_FS}), V_{EX_SB} = ((ZERO_DUTY_THR + ZERO_DUTY_HYST) x V_{ANA_FS})
- 2. PWM : Duty_{EN SB} = ZERO_DUTY_THR, Duty_{EX SB} = (ZERO_DUTY_THR + ZERO_DUTY_HYST)
- I²C : SPEED_CTRL_{EN_SB} = ZERO_DUTY_THR x 32767, SPEED_CTRL_{EX_SB} = (ZERO_DUTY_THR + ZERO_DUTY_HYST) x 32767
- 4. Frequency : Freq_{EN_SB} = ZERO_DUTY_THR x INPUT_MAX_FREQUENCY, Freq_{EX_SB} = (ZERO_DUTY_THR + ZERO_DUTY_HYST) x INPUT_MAX_FREQUENCY

SPEED COMMAND MODE	ENTER STANDBY CONDITION	EXIT FROM STANDBY CONDITION	ENTER SLEEP CONDITION	EXIT FROM SLEEP CONDITION		
Analog	V _{SPEED} < V _{EN_SB}	$V_{SPEED} > V_{EX_{SB}}$	V _{SPEED} < V _{EN_SL} for t _{DET_SL_ANA}	$V_{SPEED} > V_{EX_{SL}}$ for $t_{DET_{ANA}}$		
PWM	Duty _{SPEED} < Duty _{EN_SB}	Duty _{SPEED} > Duty _{EX_SB}	$V_{SPEED} < V_{IL}$ for $t_{DET_SL_PWM}$	$V_{SPEED} > V_{IH}$ for t_{DET_PWM}		
l ² C	SPEED_CTRL < SPEED_CTRL _{EN_SB}	SPEED_CTRL > SPEED_CTRL _{EX_SB}	SPEED_CTRL is set to 0b for SLEEP_TIME and V _{SPEED} < V _{IL}	$V_{SPEED} > V_{IH}$ for t_{DET_PWM}		
Frequency	Freq _{SPEED} < Freq _{EN_SB}	Freq _{SPEED} > Freq _{EX_SB}	$V_{SPEED} < V_{IL}$ for $t_{DET_SL_PWM}$	$V_{SPEED} > V_{IH}$ for t_{DET_PWM}		

表 8-2. Conditions to Enter or Exit Sleep or Standby Modes

8.4.1.3 Fault Reset (CLR_FLT)

In the case of latched faults, the device goes into a partial shutdown state to help protect the power MOSFETs and system. When the fault condition clears, the device can go to the operating state again by setting the CLR_FLT to 1b.

8.5 External Interface

8.5.1 DAC outputs

MCT8317A has two 12-bit DACs which output analog voltage equivalent of digital variables on DACOUT1 and DACOUT2 pins with resolution of 12 bits and maximum voltage is 3-V. Signals available on DACOUT pins is useful in tracking algorithm variables in real-time and can be used for tuning speed controller or motor acceleration time. The address for variables for DACOUT1 and DACOUT2 are configured using DACOUT1_VAR_ADDR and DACOUT2_VAR_ADDR. DACOUT1 is available on pin 37 and DACOUT2 can be configured on pin 36 by setting DAC_SOX_CONFIG to 00b. DACOUT2 is also available on pin 38.

8.5.2 SOX Output

MCT8317A can provide the built-in current sense amplifiers' output on the SOX pin. SOX output is available on pin 36 and can be configured by DAC_SOX_CONFIG.

8.5.3 Oscillator Source

MCT8317A has a built-in oscillator that is used as the clock source for all digital peripherals and timing measurements. Default configuration for MCT8317A is to use the internal oscillator and it is sufficient to drive the motor without need for any external crystal or clock sources.

In case MCT8317A does not meet accuracy requirements of timing measurement or speed loop, then MCT8317A has an option to support an external clock reference.

In order to improve EMI performance, MCT8317A provides the option of modulating the clock frequency by enabling Spread Spectrum Modulation (SSM) through SSM_CONFIG

8.5.3.1 External Clock Source

Speed loop accuracy of MCT8317A over wide operating temperature range can be improved by providing more accurate optional clock reference on EXT_CLK pin as shown in 🕅 8-46. EXT_CLK will be used to calibrate internal clock oscillator and match the accuracy of the external clock. External clock source can be selected by configuring CLK_SEL to 11b and setting EXT_CLK_EN to 1b. The external clock source frequency can be configured through EXT_CLK_CONFIG.

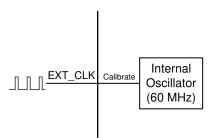


图 8-46. External Clock Reference

备注

External clock is optional and can be used when higher clock accuracy is needed. MCT8317A will always power up using the internal oscillator in all modes.

8.5.4 External Watchdog

MCT8317A provides an external watchdog feature - EXT_WD_EN bit should be set to 1b to enable the external watchdog. When this feature is enabled, the device waits for a tickle (low to high transition in GPIO mode, EXT_WD_STATUS_SET set to 1b in I²C mode) from the external watchdog input for a configured time interval; if the time interval between two consecutive tickles is higher than the configured time, a watchdog fault is triggered. This fault can be configured using EXT_WD_FAULT either as a report only fault or as a latched fault with outputs in Hi-Z state. The latched fault can be cleared by writing 1b to CLR_FLT. In case, the next tickle arrives before the configured time interval elapses, the watchdog timer is reset and it begins to wait for the next tickle. This can be used to continuously monitor the health of an external MCU (which is the external watchdog input) and put the MCT8317A outputs in Hi-Z in case the external MCU is in an erroneous state.

The external watchdog input is selected using EXT_WD_INPUT and can either be the EXT_WD pin or the I²C interface. The time interval between two tickles to trigger a watchdog fault is configured by EXT_WD_FREQ; there are 4 time (frequency) settings - 100 (10Hz), 200 (5Hz), 500 (2Hz) and 1000ms (1Hz).

8.6 EEPROM access and I²C interface

8.6.1 EEPROM Access

MCT8317A has 1024 bits (16 rows of 64 bits each) of EEPROM, which are used to store the motor configuration parameters. Erase operations are row-wise (all 64 bits are erased in a single erase operation), but 32-bit write and read operations are supported. EEPROM can be written and read using the I²C serial interface but erase cannot be performed using I²C serial interface. The shadow registers corresponding to the EEPROM are located at addresses 0x000080-0x0000AE.

备注 MCT8317A allows EEPROM write and read operations only when the motor is not spinning.

8.6.1.1 EEPROM Write

In MCT8317A, EEPROM write procedure is as follows,

- 1. Write register 0x000080 (ISD_CONFIG) with ISD configuration like resync enable, reverse drive enable, stationary detect threshold etc.,
- 2. Write register 0x000082 (MOTOR_STARTUP1) with motor start-up configuration like start-up method, first cycle frequency, IPD parameters, align parameters etc.,
- 3. Write register 0x000084 (MOTOR_STARTUP2) with motor start-up configuration like open loop acceleration, minimum duty cycle etc.,
- 4. Write register 0x000086 (CLOSED_LOOP1) with motor control configuration like closed loop acceleration, PWM frequency, PWM modulation etc.,
- 5. Write register 0x000088 (CLOSED_LOOP2) with motor control configuration like FG signal parameters, motor stop options etc.,
- 6. Write register 0x00008A (CLOSED_LOOP3) with motor control configuration like fast start-up and dynamic degauss parameters including BEMF thresholds, duty cycle thresholds etc.,
- 7. Write register 0x00008C (CLOSED_LOOP4) with motor control configuration like fast deceleration parameters including fast deceleration duty threshold, window, current limits etc.,
- 8. Write register 0x00008E (CONST_SPEED) with motor control configuration like speed loop parameters including closed loop mode, saturation limits, K_p, K_i etc.,
- 9. Write register 0x000090 (CONST_PWR) with motor control configuration like input power regulation parameters including maximum power, constant power mode, power level hysteresis, maximum speed etc.,
- 10. Write register 0x000092 (FAULT_CONFIG1) with fault control configuration like CBC, lock current limits and actions, retry times etc.,
- 11. Write register 0x000094 (FAULT_CONFIG2) with fault control configuration like OV, UV limits and actions, abnormal speed level, motor lock setting etc.,
- 12. Write registers 0x000096 and 0x000098 (150_DEG_TWO_PH_PROFILE, 150_DEG_THREE_PH_PROFILE) with PWM duty cycle configurations for 150° modulation.
- 13. Write registers 0x00009A and 0x00009C (TRAP_CONFIG1 and TRAP_CONFIG2) with algorithm parameters like ISD BEMF threshold, blanking time, AVS current limits etc.,
- 14. Write registers 0x0000A4 and 0x0000A6 (PIN_CONFIG1 and PIN_CONFIG2) with pin configuration for DIR, BRAKE, DACOUT1 and DACOUT2, SOX, external watchdog etc.,
- 15. Write register 0x0000A8 (DEVICE_CONFIG) with device configuration like device mode, external clock enable, clock source, speed input PWM frequency range etc.,
- 16. Write registers 0x0000AC and 0x0000AE (GD_CONFIG1 and GD_CONFIG2) with gate driver configuration like slew rate, CSA gain, OCP level, mode, OVP enable etc.,
- 17. Write 0x8A500000 into register 0x0000E6 to write the shadow register (0x000080-0x0000AE) values into the EEPROM.
- 18. Wait for 100ms for the EEPROM write operation to complete

Steps 1-16 can be selectively executed based on registers/parameters that need to be modified. After all shadow registers have been updated with the required values, step 17 should be executed to copy the contents of the shadow registers into the EEPROM.

8.6.1.2 EEPROM Read

In MCT8317A, EEPROM read procedure is as follows,

- 1. Write 0x40000000 into register 0x0000E6 to read the EEPROM data into the shadow registers (0x000080-0x0000AE).
- 2. Wait for 100ms for the EEPROM read operation to complete.
- Read the shadow register values, 1 or 2 registers at a time, using the I²C read command as explained in [†] 8.6.2. Shadow register addresses are in the range of 0x000080-0x0000AE. Register address increases in steps of 2 for 32-bit read operation (since each address is a 16-bit location).

8.6.2 I²C Serial Interface

MCT8317A interfaces with an external MCU over an I^2C serial interface. MCT8317A is an I^2C target to be interfaced with a controller. External MCU can use this interface to read/write from/to any non-reserved register in MCT8317A

备注 For reliable communication, a 100- μ s delay should be used between every byte transferred over the I²C bus.

8.6.2.1 I²C Data Word

The I²C data word format is shown in $\frac{1}{8}$ 8-3.

表 8-3. I²C Data Word Format

TARGET_ID	R/W	CONTROL WORD	DATA	CRC-8
A6 - A0	W0	CW23 - CW0	D15 / D31/ D63 - D0	C7 - C0

Target ID and R/W Bit: The first byte includes the 7-bit I²C target ID (0x00), followed by the read/write command bit. Every packet in MCT8317A the communication protocol starts with writing a 24-bit control word and hence the R/W bit is always 0.

24-bit Control Word: The Target Address is followed by a 24-bit control bit. The control word format is shown in 表 8-4.

表 8-4. 24-bit Control Word Format

O	P_R/W	CRC_EN	DLEN	MEM_SEC	MEM_PAGE	MEM_ADDR
(CW23	CW22	CW21- CW20	CW19 - CW16	CW15 - CW12	CW11 - CW0

Each field in the control word is explained in detail below.

OP_R/W - **Read/Write**: R/W bit gives information on whether this is a read operation or write operation. Bit value 0 indicates it is a write operation. Bit value 1 indicates it is a read operation. For write operation, MCT8317A will expect data bytes to be sent after the 24-bit control word. For read operation, MCT8317A will expect an I^2C read request with repeated start or normal start after the 24-bit control word.

CRC_EN - **Cyclic Redundancy Check(CRC) Enable**: MCT8317A supports CRC to verify the data integrity. This bit controls whether the CRC feature is enabled or not.

DLEN - **Data Length**: DLEN field determines the length of the data that will be sent by external MCU to MCT8317A. MCT8317A protocol supports three data lengths: 16-bit, 32-bit and 64-bit.

DLEN Value	Data Length
00b	16-bit
01b	32-bit
10b	64-bit

表 8-5. Data Length Configuration

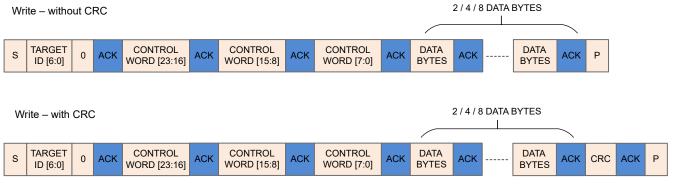
表 8-5. Data Length Configuration (continued)

DLEN Value	Data Length
11b	Reserved

MEM_SEC – **Memory Section**: Each memory location in MCT8317A is addressed using three separate entities in the control word – Memory Section, Memory Page, Memory Address. Memory Section is a 4-bit field which denotes the memory section to which the memory location belongs like RAM, ROM etc.

MEM_PAGE - **Memory Page**: Memory page is a 4-bit field which denotes the memory page to which the memory location belongs.

MEM_ADDR - **Memory Address**: Memory address is the last 12-bits of the address. The complete 22-bit address is constructed internally by MCT8317A using all three fields - Memory Section, Memory Page, Memory Address. For memory locations 0x000000-0x000800, memory section is 0x0, memory page is 0x0 and memory address is the lowest 12 bits(0x000 for 0x000000, 0x080 for 0x000080 and 0x800 for 0x000800)


Data Bytes: For a write operation to MCT8317A, the 24-bit control word is followed by data bytes. The DLEN field in the control word should correspond with the number of bytes sent in this section.

CRC Byte: If the CRC feature is enabled in the control word, CRC byte has to be sent at the end of a write transaction. Procedure to calculate CRC is explained in CRC Byte Calculation below.

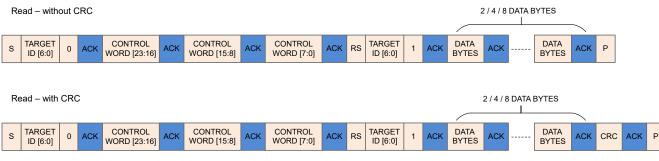
8.6.2.2 I²C Write Operation

MCT8317A write operation over I²C involves the following sequence.

- 1. I²C start condition.
- The sequence starts with I²C target start byte, made up of 7-bit target ID (0x00) to identify the MCT8317A along with the R/W bit set to 0.
- 3. The start byte is followed by 24-bit control word. Bit 23 in the control word has to be 0 as it is a write operation.
- 4. The 24-bit control word is then followed by the data bytes. The length of the data byte depends on the DLEN field.
 - a. While sending data bytes, the LSB byte is sent first. Refer below examples for more details.
 - b. 16-bit/32-bit write The data sent is written to the address mentioned in Control Word.
 - c. 64-bit Write 64-bit is treated as two 32-bit writes. The address mentioned in Control word is taken as Addr 0. Addr 1 is calculating internally by MCT8317A by incrementing Addr 0 by 2. A total of 8 data bytes are sent. The first 4 bytes (sent in LSB first way) are written to Addr 0 and the next 4 bytes are written to Addr 1.
- 5. If CRC is enabled, the packet ends with a CRC byte. CRC is calculated for the entire packet (Target ID + W bit, Control Word, Data Bytes).
- 6. I²C stop condition.

CRC includes {TARGET ID,0}, CONTROL WORD[23:0], DATA BYTES

图 8-47. I²C Write Operation Sequence



8.6.2.3 I²C Read Operation

MCT8317A read operation over I²C involves the following sequence.

- 1. I²C start condition.
- 2. The sequence starts with I²C target Start Byte.
- 3. The Start Byte is followed by 24-bit Control Word. Bit 23 in the control word has to be 1 as it is a read operation.
- 4. The control word is followed by a repeated start or normal start.
- 5. MCT8317A sends the data bytes on SDA. The number of bytes sent by MCT8317A depends on the DLEN field value in the control word.
 - a. While sending data bytes, the LSB byte is sent first. Refer the examples below for more details.
 - b. 16-bit/32-bit Read The data from the address mentioned in Control Word is sent back.
 - c. 64-bit Read 64-bit is treated as two 32-bit read. The address mentioned in Control Word is taken as Addr 0. Addr 1 is calculating internally by MCT8317A by incrementing Addr 0 by 2. A total of 8 data bytes are sent by MCT8317A. The first 4 bytes (sent in LSB first way) are read from Addr 0 and the next 4 bytes are read from Addr 1.
 - d. MCT8317A takes some time to process the control word and read data from the given address. This involves some delay. It is quite possible that the repeated start with Target ID will be NACK' d. If the I²C read request has been NACK' d by MCT8317A, retry after few cycles. During this retry, it is not necessary to send the entire packet along with the control word. It is sufficient to send only the start condition with target ID and read bit.
- If CRC is enabled, then MCT8317A sends an additional CRC byte at the end. If CRC is enabled, external MCU I²C controller has to read this additional byte before sending the stop bit. CRC is calculated for the entire packet (Target ID + W bit, Control Word, Target ID + R bit, Data Bytes).

CRC includes {TARGET ID,0}, CONTROL WORD[23:0], {TARGET ID,1}, DATA BYTES

图 8-48. I²C Read Operation Sequence

8.6.2.4 Examples of MCT8317A I²C Communication Protocol Packets

All values used in this example section are in hex format. I²C target ID used in the examples is 0x00.

Example for 32-bit Write Operation: Address - 0x00000080, Data - 0x1234ABCD, CRC Byte - 0x45 (Sample value; does not match with the actual CRC calculation)

			1		(ampio i			• • • • • • •	0111 40				
Start Byte		Control Word 0			Control Word 1 Control Word 2		Control Word 2	5				CRC	
Target ID	l ² C Write	OP_R/ W	CRC_E N	DLEN	MEM_S EC	MEM_P AGE	MEM_A DDR	MEM_A DDR	DB0	DB1	DB2	DB3	CRC Byte
A6-A0	W0	CW23	CW22	CW21- CW20	CW19- CW16	CW15- CW12	CW11- CW8	CW7- CW0	D7-D0	D7-D0	D7-D0	D7-D0	C7-C0
0x00	0x0	0x0	0x1	0x1	0x0	0x0	0x0	0x80	0xCD	0xAB	0x34	0x12	0x45
0x00		0x50		•		0x00		0x80	0xCD	0xAB	0x34	0x12	0x45

表 8-6. Example for 32-bit Write Operation Packet

Example for 64-bit Write Operation: Address - 0x00000080, Data Address 0x00000080 - Data 0x01234567, Data Address 0x00000082 - Data 0x89ABCDEF, CRC Byte - 0x45 (Sample value; does not match with the actual CRC calculation)

			•							
Start By	Start Byte Control Word 0		Control Word 0 Control Word 1		Control Word 2	Data Bytes	CRC			
Target ID	l ² C Write	OP_R/W	CRC_EN	DLEN	MEM_SEC	MEM_PAGE	MEM_ADDR	MEM_ADDR	DB0 - DB7	CRC Byte
A6-A0	W0	CW23	CW22	CW21- CW20	CW19- CW16	CW15- CW12	CW11-CW8	CW7-CW0	[D7-D0] x 8	C7-C0
0x00	0x0	0x0	0x1	0x2	0x0	0x0	0x0	0x80	0x67452301EFCDAB89	0x45
0x00	00 0x60		0x00		0x80	0x67452301EFCDAB89	0x45			

表 8-7. Example for 64-bit Write Operation Packet

Example for 32-bit Read Operation: Address - 0x00000080, Data - 0x1234ABCD, CRC Byte - 0x56 (Sample value; does not match with the actual CRC calculation)

······································															
Start Byte		Control Word 0				Control Word 1		Control Word 2	Start Byte		Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
Target ID	I ² C Write	R/W	CRC_ EN	DLEN	MEM_ SEC	MEM_ PAGE	MEM_ ADDR	MEM_ ADDR	Target ID	l ² C Read	DB0	DB1	DB2	DB3	CRC Byte
A6-A0	W0	CW23	CW22	CW21- CW20	CW19- CW16	CW15- CW12	CW11- CW8	CW7- CW0	A6-A0	W0	D7-D0	D7-D0	D7-D0	D7-D0	C7-C0
0x00	0x0	0x1	0x1	0x1	0x0	0x0	0x0	0x80	0x00	0x1	0xCD	0xAB	0x34	0x12	0x56
0x00		0xD0			0x00		0x80	0x01		0xCD	0xAB	0x34	0x12	0x56	

表 8-8. Example for 32-bit Read Operation Packet

8.6.2.5 Internal Buffers

MCT8317A uses buffers internally to store the data received on I^2C . Highest priority is given to collecting data on the I^2C Bus. There are 2 buffers (ping-pong) for I^2C Rx Data and 2 buffers (ping-pong) for I^2C Tx Data.

A write request from external MCU is stored in Rx Buffer 1 and then the parsing block is triggered to work on this data in Rx Buffer 1. While MCT8317A is processing a write packet from Rx Buffer 1, if there is another new read/ write request, the entire data from the I²C bus is stored in Rx Buffer 2 and it will be processed after the current request.

MCT8317A can accommodate a maximum of two consecutive read/write requests. If MCT8317A is busy due to high priority interrupts, the data sent will be stored in internal buffers (Rx Buffer 1 and Rx Buffer 2). At this point, if there is a third read/write request, the Target ID will be NACK' d as the buffers are already full.

During read operations, the read request is processed and the read data from the register is stored in the Tx Buffer along with the CRC byte, if enabled. Now if the external MCU initiates an I^2C Read (Target ID + R bit), the data from this Tx Buffer is sent over I^2C . Since there are two Tx Buffers, register data from 2 MCT8317A reads can be buffered. Given this scenario, if there is a third read request, the control word will be stored in the Rx Buffer 1, but it will not be processed by MCT8317A as the Tx Buffers are full.

Once a data is read from Tx Buffer, the data is no longer stored in the Tx buffer. The buffer is cleared and it becomes available for the next data to be stored. If the read transaction was interrupted in between and if the MCU had not read all the bytes, external MCU can initiate another I²C read (only I²C read, without any control word information) to read all the data bytes from first.

8.6.2.6 CRC Byte Calculation

An 8-bit CCIT polynomial $(x^8 + x^2 + x + 1)$ is used for CRC computation.

CRC Calculation in Write Operation: When the external MCU writes to MCT8317A, if the CRC is enabled, the external MCU has to compute an 8-bit CRC byte and add the CRC byte at the end of the data. MCT8317A will

compute CRC using the same polynomial internally and if there is a mismatch, the write request is discarded. Input data for CRC calculation by external MCU for write operation are listed below:

- 1. Target ID + write bit.
- 2. Control word 3 bytes
- 3. Data bytes 2/4/8 bytes

CRC Calculation in Read Operation: When the external MCU reads from MCT8317A, if the CRC is enabled, MCT8317A sends the CRC byte at the end of the data. The CRC computation in read operation involves the start byte, control words sent by external MCU along with data bytes sent by MCT8317A. Input data for CRC calculation by external MCU to verify the data sent by MCT8317A are listed below :

- 1. Target ID + write bit
- 2. Control word 3 bytes
- 3. Target ID + read bit
- 4. Data bytes 2/4/8 bytes

8.7 EEPROM (Non-Volatile) Register Map

8.7.1 Algorithm_Configuration Registers

8-9 lists the memory-mapped registers for the Algorithm_Configuration registers. All register offset addresses not listed in **8-9** should be considered as reserved locations and the register contents should not be modified.

Offset	Acronym	Register Name	Section
80h	ISD_CONFIG	ISD configuration	ISD_CONFIG Register (Offset = 80h) [Reset = 00000000h]
82h	MOTOR_STARTUP1	Motor start-up configuration 1	MOTOR_STARTUP1 Register (Offset = 82h) [Reset = 00000000h]
84h	MOTOR_STARTUP2	Motor start-up configuration 2	MOTOR_STARTUP2 Register (Offset = 84h) [Reset = 00000000h]
86h	CLOSED_LOOP1	Closed loop configuration 1	CLOSED_LOOP1 Register (Offset = 86h) [Reset = 00000000h]
88h	CLOSED_LOOP2	Closed loop configuration 2	CLOSED_LOOP2 Register (Offset = 88h) [Reset = 00000000h]
8Ah	CLOSED_LOOP3	Closed loop configuration 3	CLOSED_LOOP3 Register (Offset = 8Ah) [Reset = 000000A0h]
8Ch	CLOSED_LOOP4	Closed loop configuration 4	CLOSED_LOOP4 Register (Offset = 8Ch) [Reset = 00000000h]
8Eh	CONST_SPEED	Constant speed configuration	CONST_SPEED Register (Offset = 8Eh) [Reset = 00000000h]
90h	CONST_PWR	Constant power configuration	CONST_PWR Register (Offset = 90h) [Reset = 0000000h]
96h	150_DEG_TWO_PH_PROFILE	150° Two-ph profile	150_DEG_TWO_PH_PROFILE Register (Offset = 96h) [Reset = 00000000h]
98h	150_DEG_THREE_PH_PROFIL E	150° Three-ph profile	150_DEG_THREE_PH_PROFILE Register (Offset = 98h) [Reset = 00000000h]
9Ah	REF_PROFILES1	Speed Profile Configuration1	REF_PROFILES1 Register (Offset = 9Ah) [Reset = X]
9Ch	REF_PROFILES2	Speed Profile Configuration2	REF_PROFILES2 Register (Offset = 9Ch) [Reset = X]
9Eh	REF_PROFILES3	Speed Profile Configuration3	REF_PROFILES3 Register (Offset = 9Eh) [Reset = X]
A0h	REF_PROFILES4	Speed Profile Configuration4	REF_PROFILES4 Register (Offset = A0h) [Reset = X]
A2h	REF_PROFILES5	Speed Profile Configuration5	REF_PROFILES5 Register (Offset = A2h) [Reset = X]
A4h	REF_PROFILES6	Speed Profile Configuration6	REF_PROFILES6 Register (Offset = A4h) [Reset = X]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-10 shows the codes that are used for access types in this section.

Access Type Code Description					
Read Type					
R	R	Read			
Write Type					
W	W	Write			

表 8-10. Algorithm_Configuration Access Type

表 8-10. Algorithm_Configuration Access Type Codes (continued)

Access Type	Code	Description
-n		Value after reset or the default value

MCT8317A ZHCSQ32 - JANUARY 2023

8.7.1.1 ISD_CONFIG Register (Offset = 80h) [Reset = 0000000h]

ISD_CONFIG is shown in 图 8-49 and described in 表 8-11.

Return to the Summary Table.

Register to configure initial speed detect settings

		图	8-49. ISD_C	ONFIG Regist	er		
31	30	29	28	27	26	25	24
PARITY	ISD_EN	BRAKE_EN	HIZ_EN	RVS_DR_EN	RESYNC_EN	STAT_BRK_EN	STAT_DETECT _THR
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
23	22	21	20	19	18	17	16
STAT_DE1	ECT_THR	BRK_MODE	RESERVED		RESERVED		BRK_TIME
R/M	V-0h	R/W-0h	R/W-0h		R/W-0h		R/W-0h
15	14	13	12	11	10	9	8
	BRK_TIME			HIZ_	TIME		STARTUP_BRK _TIME
	R/W-0h			R/W	/-0h		R/W-0h
7	6	5	4	3	2	1	0
STARTUP_	BRK_TIME	RESY	NC_MIN_THRES	HOLD	MTR_S	TARTUP	IPD_RLS_MOD E
R/V	V-0h		R/W-0h		R/V	V-0h	R/W-0h

表 8-11. ISD_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description	
31	PARITY	R/W	0h	Parity bit	
30	ISD_EN	R/W	Oh	ISD enable 0h = Disable 1h = Enable	
29	BRAKE_EN	R/W	Oh	Brake enable 0h = Disable 1h = Enable	
28	HIZ_EN	R/W	Oh	Hi-Z enable 0h = Disable 1h = Enable	
27	RVS_DR_EN	R/W	Oh	Reverse drive enable 0h = Disable 1h = Enable	
26	RESYNC_EN	R/W	0h	Resynchronization enable 0h = Disable 1h = Enable	
25	STAT_BRK_EN	R/W	0h	Enable or disable brake during stationary 0h = Disable 1h = Enable	
24-22	STAT_DETECT_THR	R/W	0h	Stationary BEMF detect threshold 0h = 5 mV 1h = 10 mV 2h = 15 mV 3h = 20 mV 4h = 25 mV 5h = 30 mV 6h = 50 mV 7h = 100 mV	

表 8-11. ISD_CONFIG Register Field Descriptions	(continued)	
--	-------------	--

Bit	Field		Reset	Field Descriptions (continued) Description
		Туре		
21	BRK_MODE	R/W	Oh	Brake mode 0h = All three low-side FETs turned ON 1h = All three high-side FETs turned ON
20	RESERVED	R/W	0h	Reserved
19-17	RESERVED	R/W	0h	Reserved
16-13	BRK_TIME	R/W	0h	Brake time 0h = 10 ms 1h = 50 ms 2h = 100 ms 3h = 200 ms 4h = 300 ms 5h = 400 ms 6h = 500 ms 7h = 750 ms 8h = 1 s 9h = 2 s Ah = 3 s Bh = 4 s Ch = 5 s Dh = 7.5 s Eh = 10 s Fh = 15 s
12-9	HIZ_TIME	R/W	0h	Hi-Z time $0h = 10 \text{ ms}$ $1h = 50 \text{ ms}$ $2h = 100 \text{ ms}$ $2h = 100 \text{ ms}$ $3h = 200 \text{ ms}$ $4h = 300 \text{ ms}$ $5h = 400 \text{ ms}$ $6h = 500 \text{ ms}$ $6h = 500 \text{ ms}$ $7h = 750 \text{ ms}$ $8h = 1 \text{ s}$ $9h = 2 \text{ s}$ $Ah = 3 \text{ s}$ $Bh = 4 \text{ s}$ $Ch = 5 \text{ s}$ $Dh = 7.5 \text{ s}$ $Eh = 10 \text{ s}$ $Fh = 15 \text{ s}$
8-6	STARTUP_BRK_TIME	R/W	0h	Brake time when motor is stationary Oh = 1 ms 1h = 10 ms 2h = 25 ms 3h = 50 ms 4h = 100 ms 5h = 250 ms 6h = 500 ms 7h = 1000 ms
5-3	RESYNC_MIN_THRESH OLD	R/W	Oh	Minimum phase BEMF below which the motor is coasted instead of resync 0h = computed based on MIN_DUTY 1h = 300 mV 2h = 400 mV 3h = 500 mV 4h = 600 mV 5h = 800 mV 6h = 1000 mV 7h = 1250 mV

Bit	Field	Туре	Reset	Description		
2-1	MTR_STARTUP	R/W		Motor start-up method 0h = Align 1h = Double Align 2h = IPD 3h = Slow first cycle		
0	IPD_RLS_MODE	R/W	0h	IPD release mode 0h = Brake 1h = Tristate		

表 8-11. ISD_CONFIG Register Field Descriptions (continued)

8.7.1.2 MOTOR_STARTUP1 Register (Offset = 82h) [Reset = 0000000h]

MOTOR_STARTUP1 is shown in 图 8-50 and described in 表 8-12.

Return to the Summary Table.

Register to configure motor startup settings1

图 8-50. MOTOR_STARTUP1 Register

					•		
31	30	29	28	27	26	25	24
PARITY		ALIGN_RA	MP_RATE			ALIGN_TIME	
R/W-0h		R/V	V-0h			R/W-0h	
23	22	21	20	19	18	17	16
ALIGN_TIME	ALIGN_CURR_THR					ALIGN	DUTY
R/W-0h	R/W-0h					R/V	/-0h
15	14	13	12	11	10	9	8
	IPD_CLK_FREQ				IPD_CURR_THR		
	R/W-0h				R/W-0h		
7	6	5	4	3	2	1	0
IPD_AD\	IPD_ADV_ANGLE IPD_REPEAT				SLOW_FIRST	_CYC_FREQ	
R/V	V-0h	R/V	V-0h		R/W	/-0h	

表 8-12. MOTOR_STARTUP1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-27	ALIGN_RAMP_RATE	R/W	Oh	Align voltage ramp rate 0h = 0.1 V/s 1h = 0.2 V/s 2h = 0.5 V/s 3h = 1 V/s 4h = 2.5 V/s 5h = 5 V/s 6h = 7.5 V/s 7h = 10 V/s 8h = 25 V/s 9h = 50 V/s Ah = 75 V/s Bh = 100 V/s Ch = 250 V/s Dh = 500 V/s Eh = 750 V/s Fh = 1000 V/s
26-23	ALIGN_TIME	R/W	Oh	Align time 0h = 5 ms 1h = 10 ms 2h = 25 ms 3h = 50 ms 4h = 75 ms 5h = 100 ms 6h = 200 ms 7h = 400 ms 8h = 600 ms 9h = 800 ms Ah = 1 s Bh = 2 s Ch = 4 s Dh = 6 s Eh = 8 s Fh = 10 s

23	
表 8-12. MOTOR_STARTUP1	Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
22-18	ALIGN_CURR_THR	R/W	Oh	Align current threshold (Align current threshold (A) = ALIGN_CURR_THR / CSA_GAIN) Oh = 0.0 V 1h = 0.1 V 2h = 0.2 V 3h = 0.3 V 4h = 0.4 V 5h = 0.5 V 6h = 0.6 V 7h = 0.7 V 8h = 0.8 V 9h = 0.9 V Ah = 1.0 V Bh = 1.1 V Ch = 1.2 V Dh = 1.3 V Eh = 1.4 V Fh = 1.5 V 10h = N/A 11h = N/A 12h = N/A 13h = N/A 15h = N/A 16h = N/A 19h = N/A 16h = N/A 16h = N/A 16h = N/A 17h = N/A 16h = N/A 16h = N/A 17h = N/A 17h = N/A 17h = N/A 17h = N/A 17h = N/A 17h = N/A
17-16	ALIGN_DUTY	R/W	0h	Duty cycle limit during align 0h = 10 % 1h = 25 % 2h = 50 % 3h = 100 %
15-13	IPD_CLK_FREQ	R/W	Oh	IPD clock frequency 0h = 50 Hz 1h = 100 Hz 2h = 250 Hz 3h = 500 Hz 4h = 1000 Hz 5h = 2000 Hz 6h = 5000 Hz 7h = 10000 Hz

MCT8317A

ZHCSQ32 - JANUARY 2023

Bit			_	Description
Bit 12-8	Field IPD_CURR_THR	Type R/W	Reset Oh	DescriptionIPD current threshold (IPD current threshold (A) = IPD_CURR_THR / CSA_GAIN) $0h = 0.0 V$ $1h = 0.1 V$ $2h = 0.2 V$ $3h = 0.3 V$ $4h = 0.4 V$ $5h = 0.5 V$ $6h = 0.6 V$ $7h = 0.7 V$ $8h = 0.8 V$ $9h = 0.9 V$ $Ah = 1.0 V$ $Bh = 1.1 V$ $Ch = 1.2 V$ $Dh = 1.3 V$ $Eh = 1.4 V$ $Fh = 1.5 V$ $10h = N/A$ $13h = N/A$ $13h = N/A$ $15h = N/A$ $16h = N/A$ $19h = N/A$ $19h = N/A$
7-6	IPD_ADV_ANGLE	R/W	Oh	$17h = N/A$ $18h = N/A$ $19h = N/A$ $1Ah = N/A$ $1Bh = N/A$ $1Ch = N/A$ $1Dh = N/A$ $1Eh = N/A$ $1Fh = N/A$ $1Fh = N/A$ $IPD advance angle$ $0h = 0^{\circ}$
5-4	IPD_REPEAT	R/W	Oh	$1h = 30^{\circ}$ $2h = 60^{\circ}$ $3h = 90^{\circ}$ Number of times IPD is executed $0h = one$ $1h = average of 2 times$ $2h = average of 3 times$ $3h = average of 4 times$
3-0	SLOW_FIRST_CYC_FRE Q	R/W	Oh	Frequency of first cycle 0h = 0.05 Hz 1h = 0.1 Hz 2h = 0.25 Hz 3h = 0.5 Hz 4h = 1 Hz 5h = 2 Hz 6h = 3 Hz 7h = 5 Hz 8h = 10 Hz 9h = 15 Hz Bh = 25 Hz Ch = 50 Hz Dh = 100 Hz Eh = 150 Hz Fh = 200 Hz

表 8-12. MOTOR_STARTUP1 Register Field Descriptions (continued)

8.7.1.3 MOTOR_STARTUP2 Register (Offset = 84h) [Reset = 0000000h]

MOTOR_STARTUP2 is shown in 图 8-51 and described in 表 8-13.

Return to the Summary Table.

Register to configure motor startup settings2

图 8-51. MOTOR_STARTUP2 Register

			_		•		
31	30	29	28	27	26	25	24
PARITY		OL_DUTY			OL_II	LIMIT	
R/W-0h		R/W-0h		R/W-0h			
23	22	21	20	19	18	17	16
OL_ILIMIT			OL_ACC_A1			OL_A	CC_A2
R/W-0h			R/W-0h			R/V	V-0h
15	14	13	12	11	10	9	8
	OL_ACC_A2				OPN_CL_HANDOFF_	THR	
	R/W-0h				R/W-0h		
7	6	5	4	3	2	1	0
AUTO_HANDO FF	FIRST_CYCLE _FREQ_SEL	MIN_DUTY OL_HANDOFF_CYCLES					
R/W-0h	R/W-0h	R/W-0h R/W-0h					

表 8-13. MOTOR_STARTUP2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-28	OL_DUTY	R/W	Oh	Duty cycle limit during open loop 0h = 10% 1h = 15% 2h = 20% 3h = 25% 4h = 30% 5h = 40% 6h = 50% 7h = 100%

Bit	Field	Туре	Reset	Description
Bit 27-23				Open loop current limit (OL current threshold (A) = OL_CURR_THR / CSA_GAIN) Oh = 0.0 V 1h = 0.1 V 2h = 0.2 V 3h = 0.3 V 4h = 0.4 V 5h = 0.5 V 6h = 0.6 V 7h = 0.7 V 8h = 0.8 V 9h = 0.9 V Ah = 1.0 V Bh = 1.1 V Ch = 1.2 V Dh = 1.3 V Eh = 1.4 V Fh = 1.5 V 10h = N/A 11h = N/A 13h = N/A 15h = N/A
				Fh = 1.5 V 10h = N/A 11h = N/A 12h = N/A 13h = N/A 14h = N/A
				16h = N/A 17h = N/A 18h = N/A 19h = N/A 1Ah = N/A 1Bh = N/A 1Ch = N/A 1Dh = N/A
				1Eh = N/A 1Fh = N/A

MCT8317A
ZHCSQ32 - JANUARY 2023

Bit	Field	Туре	Reset	Description
22-18	OL_ACC_A1	R/W	0h	Open loop acceleration A1
				0h = 0.005 Hz/s
				1h = 0.01 Hz/s
				2h = 0.025 Hz/s
				3h = 0.05 Hz/s
				4h = 0.1 Hz/s
				5h = 0.25 Hz/s
				6h = 0.5 Hz/s
				7h = 1 Hz/s
				8h = 2.5 Hz/s
				9h = 5 Hz/s
				Ah = 7.5 Hz/s
				Bh = 10 Hz/s
				Ch = 12.5 Hz/s
				Dh = 15 Hz/s
				Eh = 20 Hz/s
				Fh = 30 Hz/s
				10h = 40 Hz/s
				11h = 50 Hz/s
				12h = 60 Hz/s
				13h = 75 Hz/s
				14h = 100 Hz/s
				15h = 125 Hz/s
				16h = 150 Hz/s
				17h = 175 Hz/s
				18h = 200 Hz/s
				19h = 250 Hz/s
				1Ah = 300 Hz/s
				1Bh = 400 Hz/s
				1Ch = 500 Hz/s
				1Dh = 750 Hz/s
				1Eh = 1000 Hz/s
				1Fh = No Limit (32767) Hz/s

表 8-13. MOTOR_STARTUP2 Register Field Descriptions (continued)

	MCT8317A
ZHCSQ32 -	JANUARY 2023

Bit	Field	Туре	Reset	Description
17-13	OL_ACC_A2	R/W	0h	Open loop acceleration A2
				0h = 0.005 Hz/s2
				1h = 0.01 Hz/s2
				2h = 0.025 Hz/s2
				3h = 0.05 Hz/s2
				4h = 0.1 Hz/s2 5h = 0.25 Hz/s2
				$6h = 0.5 Hz/s^2$
				$7h = 1 Hz/s^2$
				8h = 2.5 Hz/s2
				9h = 5 Hz/s2
				Ah = 7.5 Hz/s2
				Bh = 10 Hz/s2
				Ch = 12.5 Hz/s2
				Dh = 15 Hz/s2
				Eh = 20 Hz/s2
				Fh = 30 Hz/s2
				10h = 40 Hz/s2
				11h = 50 Hz/s2
				$12h = 60 Hz/s^2$
				13h = 75 Hz/s2
				14h = 100 Hz/s2
				15h = 125 Hz/s2
				16h = 150 Hz/s2
				17h = 175 Hz/s2
				18h = 200 Hz/s2
				19h = 250 Hz/s2
				1Ah = 300 Hz/s2
				1Bh = 400 Hz/s2
				1Ch = 500 Hz/s2
				1Dh = 750 Hz/s2
				1Eh = 1000 Hz/s2
				1Fh = No Limit (32767) Hz/s2

表 8-13. MOTOR_STARTUP2 Register Field Descriptions (continued)

MCT8317	Α
ZHCSQ32 -	JANUARY 2023

D .1				Beardetier
Bit	Field	Туре	Reset	Description
12-8	OPN_CL_HANDOFF_TH R	R/W	0h	Open to closed loop handoff threshold 0h = 1 Hz 1h = 4 Hz
				2h = 8 Hz 3h = 12 Hz 4h = 16 Hz
				5h = 20 Hz 6h = 24 Hz
				7h = 28 Hz
				8h = 32 Hz 9h = 36 Hz
				Ah = 40 Hz
				Bh = 45 Hz
				Ch = 50 Hz
				Dh = 55 Hz Eh = 60 Hz
				Fh = 65 Hz
				10h = 70 Hz
				11h = 75 Hz
				12h = 80 Hz 13h = 85 Hz
				14h = 90 Hz
				15h = 100 Hz
				16h = 150 Hz 17h = 200 Hz
				18h = 250 Hz
				19h = 300 Hz
				1Ah = 350 Hz 1Bh = 400 Hz
				1Ch = 450 Hz
				1Dh = 500 Hz
				1Eh = 550 Hz 1Fh = 600 Hz
7	AUTO_HANDOFF	R/W	0h	Auto handoff enable
				0h = Disable Auto Handoff (and use OPN_CL_HANDOFF_THR) 1h = Enable Auto Handoff
6	FIRST_CYCLE_FREQ_S EL	R/W	0h	First cycle frequency select 0h = Defined by SLOW_FIRST_CYC_FREQ
5-2	MIN_DUTY	R/W	0h	1h = 0 Hz Min operational duty cycle
				0h = 0% 1h = 1.5 %
				2h = 2 %
				3h = 3 %
				4h = 4 % 5h = 5 %
				6h = 6 %
				7h = 7 %
				8h = 8 % 9h = 9 %
				Ah = 10 %
				Bh = 12 %
				Ch = 15 % Dh = 17.5 %
				Eh = 20 %
1-0	OL_HANDOFF_CYCLES	R/W	0h	Fh = 25 % Open loop handoff cycles
1-0				0h = 3
				1h = 6
				2h = 12 3h = 24

表 8-13. MOTOR_STARTUP2 Register Field Descriptions (continued)

8.7.1.4 CLOSED_LOOP1 Register (Offset = 86h) [Reset = 0000000h]

CLOSED_LOOP1 is shown in $\underline{\mathbb{8}}$ 8-52 and described in $\underline{\mathbb{7}}$ 8-14.

Return to the Summary Table.

Register to configure close loop settings1

			-		0		
31	30	29	28	27	26	25	24
PARITY	COMM_C	ONTROL			CL_ACC		
R/W-0h	R/W	′-0h			R/W-0h		
23	22	21	20	19	18	17	16
CL_DEC_CON FIG			CL_DEC			PWM_FR	EQ_OUT
R/W-0h			R/W-0h			R/W	'-0h
15	14	13	12	11	10	9	8
F	PWM_FREQ_OUT	-	PWM_N	NODUL	PWM_MODE	LD_ANGLE_PO LARITY	LD_ANGLE
	R/W-0h		R/W	/-0h	R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
			LD_ANGLE				RESERVED
			R/W-0h			ľ	R/W-0h

表 8-14. CLOSED_LOOP1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-29	COMM_CONTROL	R/W	0h	Trapezoidal commutation mode 0h = 120° Commutation 1h = Variable commutation between 120° and 150° 2h = N/A 3h = N/A

Bit	Field	Туре	Reset	Description
28-24	CL_ACC	R/W	Oh	Closed loop acceleration rate 0h = 0.005 V/s 1h = 0.01 V/s 2h = 0.025 V/s 3h = 0.05 V/s 4h = 0.1 V/s 5h = 0.25 V/s 6h = 0.5 V/s 7h = 1 V/s 8h = 2.5 V/s 9h = 5 V/s Ah = 7.5 V/s Bh = 10 V/s Ch = 12.5 V/s Dh = 15 V/s Eh = 20 V/s Fh = 30 V/s 10h = 40 V/s 11h = 50 V/s 12h = 60 V/s 13h = 75 V/s 14h = 100 V/s 15h = 125 V/s 16h = 150 V/s 17h = 175 V/s 18h = 200 V/s 17h = 175 V/s 18h = 200 V/s 19h = 250 V/s 19h = 250 V/s 12h = 60 V/s 12h = 60 V/s 15h = 125 V/s 16h = 150 V/s 17h = 175 V/s 18h = 200 V/s 19h = 250 V/s 12h = 60 V/s 12h = 60 V/s 12h = 60 V/s 15h = 125 V/s 16h = 150 V/s 17h = 175 V/s 18h = 200 V/s 19h = 250 V/s 12h = 300 V/s 12h = 400 V/s 12h = 500 V/s 12h = 500 V/s 12h = 1000 V/s 15h = 125 V/s 15h = 125 V/s 15h = 125 V/s 15h = 125 V/s 16h = 150 V/s 16h = 150 V/s 17h = 175 V/s 18h = 1000 V/s 18h = 400 V/s 18h = 400 V/s 18h = 400 V/s 18h = 1000 V/s 18h = 10
23	CL_DEC_CONFIG	R/W	0h	Closed loop decel configuration 0h = Close loop deceleration defined by CL_DEC

MCT8317A ZHCSQ32 - JANUARY 2023

Texas Instruments

www.ti.com.cn

	MCT8317A
ZHCSQ32 -	JANUARY 2023

表 8-14. CLOSED_LOOP1 Register Field Descriptions (continued)

	MCT8317A
ZHCSQ32 - JANUARY 2023	ZHCSQ32 - JANUARY 2023

Bit	Field	Туре	Reset	Description
17-13	PWM_FREQ_OUT	R/W	Oh	Output PWM switching frequency 0h = 5 kHz 1h = 6 kHz 2h = 7 kHz 3h = 8 kHz 4h = 9 kHz 5h = 10 kHz 6h = 11 kHz 7h = 12 kHz 8h = 13 kHz 9h = 14 kHz 7h = 15 kHz 8h = 13 kHz 9h = 14 kHz 7h = 15 kHz 8h = 16 kHz Ch = 17 kHz Dh = 18 kHz Eh = 19 kHz Fh = 20 kHz 10h = 25 kHz 11h = 30 kHz 12h = 35 kHz 13h = 40 kHz 14h = 45 kHz 15h = 50 kHz 16h = 55 kHz 17h = 60 kHz 18h = 65 kHz 19h = 70 kHz 18h = 65 kHz 19h = 70 kHz 1Ah = 75 kHz 1Bh = 80 kHz 1Dh = 90 kHz 1Bh = 80 kHz 1Dh = 90 kHz 1Eh = 95 kHz 1Fh = 100 kHz
12-11	PWM_MODUL	R/W	Oh	PWM modulation. 0h = High-Side Modulation 1h = Low-Side Modulation 2h = Mixed Modulation 3h = N/A
10	PWM_MODE	R/W	Oh	PWM mode 0h = Single Ended Mode 1h = Complementary Mode
9	LD_ANGLE_POLARITY	R/W	Oh	Polarity of applied lead angle 0h = Negative 1h = Positive
8-1	LD_ANGLE	R/W	0h	Lead Angle {Lead Angle (deg) = LD_ANGLE * 0.12}
0	RESERVED	R/W	0h	Reserved
			1	

表 8-14. CLOSED_LOOP1 Register Field Descriptions (continued)

8.7.1.5 CLOSED_LOOP2 Register (Offset = 88h) [Reset = 0000000h]

CLOSED_LOOP2 is shown in 图 8-53 and described in 表 8-15.

Return to the Summary Table.

Register to configure close loop settings2

		图	8-53. CLOSED	_LOOP2 Regi	ster			
31	30	29	28	27	26	25	24	
PARITY	FG_	SEL		FG_DIV_FACTOR				
R/W-0h	R/W	/-0h		R/W	/-0h		R/W-0h	
23	22	21	20	19	18	17	16	
	FG_BEMF_THR			MTR_STOP		MTR_STOP	_BRK_TIME	
	R/W-0h		·	R/W-0h		R/W	/-0h	
15	14	13	12	11	10	9	8	
MTR_STOP	BRK_TIME	A	CT_SPIN_BRK_T	HR	BRAK	E_DUTY_THRES	HOLD	
R/V	V-0h		R/W-0h			R/W-0h		
7	6	5	4	3	2	1	0	
AVS_EN			CBC_ILIMIT			OL_ILIMIT_CO NFIG	INTEG_ZC_ME THOD	
R/W-0h			R/W-0h			R/W-0h	R/W-0h	

表 8-15. CLOSED_LOOP2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-29	FG_SEL	R/W	Oh	FG mode select Oh = Output FG in open loop and closed loop 1h = Output FG in only closed loop 2h = Output FG in open loop for the first try. 3h = N/A
28-25	FG_DIV_FACTOR	R/W	Oh	FG division factor 0h = Divide by 3 (2-pole motor mechanical speed/3) 1h = Divide by 1 (2-pole motor mechanical speed) 2h = Divide by 2 (4-pole motor mechanical speed) 3h = Divide by 3 (6-pole motor mechanical speed) 4h = Divide by 4 (8-pole motor mechanical speed) 5h = Divide by 5 (10-pole motor mechanical speed) 6h = Divide by 5 (10-pole motor mechanical speed) 6h = Divide by 6 (12-pole motor mechanical speed) 7h = Divide by 7 (14-pole motor mechanical speed) 8h = Divide by 8 (16-pole motor mechanical speed) 9h = Divide by 9 (18-pole motor mechanical speed) Ah = Divide by 10 (20-pole motor mechanical speed) Bh = Divide by 11 (22-pole motor mechanical speed) Ch = Divide by 12 (24-pole motor mechanical speed) Dh = Divide by 13 (26-pole motor mechanical speed) Fh = Divide by 14 (28-pole motor mechanical speed) Fh = Divide by 15 (30-pole motor mechanical speed)
24	DEAD_TIME_COMP	R/W	0h	Dead Time Compensation 0h = Disable 1h = Enable

Copyright © 2023 Texas Instruments Incorporated

MCT8317A	
ZHCSQ32 - JANUARY 2	023

	表 8-15. CL	OSED_LO	OP2 Regist	er Field Descriptions (continued)
Bit	Field	Туре	Reset	Description
23-21	FG_BEMF_THR	R/W	Oh	FG output BEMF threshold 0h = +/- 1mV 1h = +/- 2mV 2h = +/- 5mV 3h = +/- 10mV 4h = +/- 20mV 5h = +/- 30mV 6h = N/A 7h = N/A
20-18	MTR_STOP	R/W	0h	Motor stop method 0h = Hi-z 1h = Recirculation 2h = Low-side braking 3h = High-side braking 4h = Active spin down 5h = N/A 6h = N/A 7h = N/A
17-14	MTR_STOP_BRK_TIME	R/W	Oh	Brake time during motor stop 0h = 1 ms 1h = 2 ms 2h = 5 ms 3h = 10 ms 4h = 15 ms 5h = 25 ms 6h = 50 ms 7h = 75 ms 8h = 100 ms 9h = 250 ms Ah = 500 ms Bh = 1000 ms Ch = 2500 ms Dh = 5000 ms Eh = 10000 ms Fh = 15000 ms
13-11	ACT_SPIN_BRK_THR	R/W	Oh	Duty cycle threshold for motor stop using active spin down, low- and high-side braking Oh = Immediate 1h = 50 % 2h = 25 % 3h = 15 % 4h = 10 % 5h = 7.5 % 6h = 5 % 7h = 2.5 %
10-8	BRAKE_DUTY_THRESH OLD	R/W	Oh	Duty cycle threshold for BRAKE pin based low-side braking 0h = Immediate 1h = 50 % 2h = 25 % 3h = 15 % 4h = 10 % 5h = 7.5 % 6h = 5 % 7h = 2.5 %
7	AVS_EN	R/W	Oh	AVS enable 0h = Disable 1h = Enable

ADVANCE INFORMATION

	MCT8317A
ZHCSQ32 -	JANUARY 2023

Bit	Field	Туре	Reset	Description
6-2	CBC_ILIMIT	R/W	Oh	Cycle by Cycle (CBC) current limit (CBC current limit (A) = CBC_ILIMIT / CSA_GAIN) 0h = 0.0 V 1h = 0.1 V 2h = 0.2 V 3h = 0.3 V 4h = 0.4 V 5h = 0.5 V 6h = 0.6 V 7h = 0.7 V 8h = 0.8 V 9h = 0.9 V Ah = 1.0 V Bh = 1.1 V Ch = 1.2 V Dh = 1.3 V Eh = 1.4 V Fh = 1.5 V 10h = N/A 11h = N/A 12h = N/A 13h = N/A 15h = N/A 16h = N/A 19h = N/A
1	OL_ILIMIT_CONFIG	R/W	0h	Open loop current limit configuration 0h = Open loop current limit defined by OL_ILIMIT 1h = Open loop current limit defined by ILIMIT
0	INTEG_ZC_METHOD	R/W	0h	Commutation method select 0h = ZC based 1h = Integration based

表 8-15. CLOSED_LOOP2 Register Field Descriptions (continued)

8.7.1.6 CLOSED_LOOP3 Register (Offset = 8Ah) [Reset = 000000A0h]

CLOSED_LOOP3 is shown in [8] 8-54 and described in \mathbb{R} 8-16.

Return to the Summary Table.

Register to configure close loop settings3

		<u>е на</u>	••=••==	_ 			
31	30	29	28	27	26	25	24
PARITY	INTEG_CYC	L_THR_LOW	INTEG_CYCL_THR_HIGH		INTEG_DUTY	INTEG_DUTY_ THR_HIGH	
R/W-0h	R/V	V-0h	R/W-0h		R/W	R/W-0h	
23	22	21	20	19	18	17	16
INTEG_DUTY_ THR_HIGH			BEMF_THF	RESHOLD2			BEMF_THRES HOLD1
R/W-0h			R/V	/-0h			R/W-0h
15	14	13	12	11	10	9	8
	BE	EMF_THRESHOLI	D1		DYN	I_DGS_FILT_CO	UNT
	R/W-0h					R/W-0h	
7	6	5	4	3	2	1	0
DYN_DGS_UPPER_LIM DYN_DGS_LOWER_LI			_OWER_LIM	DE	EGAUSS_MAX_W	'IN	DYN_DEGAUS S_EN
R/W-2h R/W-2h					R/W-0h		R/W-0h

表 8-16. CLOSED_LOOP3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-29	INTEG_CYCL_THR_LOW	R/W	0h	Number of BEMF samples per 30° below which commutation method switches from integration to ZC 0h = 3 1h = 4 2h = 6 3h = 8
28-27	INTEG_CYCL_THR_HIG H	R/W	Oh	Number of BEMF samples per 30° above which commutation method switches from ZC to integration 0h = 4 1h = 6 2h = 8 3h = 10
26-25	INTEG_DUTY_THR_LOW	R/W	0h	Duty cycle below which commutation method switches from integration to ZC 0h = 12 % 1h = 15 % 2h = 18 % 3h = 20 %
24-23	INTEG_DUTY_THR_HIG H	R/W	0h	Duty cycle above which commutation method switches from ZC to integration 0h = 12 % 1h = 15 % 2h = 18 % 3h = 20 %

ADVANCE INFORMATION

				er Field Descriptions (continued)
Bit	Field	Туре	Reset	Description
22-17	BEMF_THRESHOLD2	R/W	0h	BEMF threshold for integration based commutation during falling
				floating phase voltage
				0h = 0
				1h = 25
				2h = 50
				3h = 75
				4h = 100
				5h = 125
				6h = 150
				7h = 175 8h = 200
				9h = 225
				Ah = 250
				Bh = 275
				Ch = 300
				Dh = 325
				Eh = 350
				Fh = 375
				10h = 400
				11h = 425
				12h = 450
				13h = 475
				14h = 500
				15h = 525
				16h = 550
				17h = 575
				18h = 600
				19h = 625 1Ah = 650
				1Bh = 675
				1Ch = 700
				1Dh = 725
				1Eh = 750
				1Fh = 775
				20h = 800
				21h = 850
				22h = 900
				23h = 950
				24h = 1000
				25h = 1050
				26h = 1100
				27h = 1150
				28h = 1200 20h = 1250
				29h = 1250 2Ah = 1300
				2Bh = 1350
				2Ch = 1400
				2Dh = 1450
				2Eh = 1500
				2Fh = 1550
				30h = 1600
				31h = 1700
				32h = 1800
				33h = 1900
				34h = 2000
				35h = 2100
				36h = 2200
				37h = 2300
				38h = 2400
				39h = 2600
				3Ah = 2800 3Bh = 2000
				3Bh = 3000 3Ch = 3200
				3Dh = 3400
				3Eh = 3600
				3Fh = 3800

表 8-16. CLOSED_LOOP3 Register Field Descriptions (continued)

MCT8317A
ZHCSQ32 - JANUARY 2023

				ter Field Descriptions (continued)
Bit	Field	Туре	Reset	Description
16-11	BEMF_THRESHOLD1	R/W	0h	BEMF threshold for integration based commutation during rising
				floating phase voltage
				Oh = O
				1h = 25
				2h = 50
				3h = 75 4h = 100
				5h = 125
				6h = 150
				7h = 175
				8h = 200
				9h = 225
				Ah = 250
				Bh = 275
				Ch = 300
				Dh = 325
				Eh = 350
				Fh = 375
				10h = 400 11h = 425
				11h = 425 12h = 450
				13h = 475
				14h = 500
				15h = 525
				16h = 550
				17h = 575
				18h = 600
				19h = 625
				1Ah = 650
				1Bh = 675
				1Ch = 700 1Dh = 725
				1Eh = 750
				1Fh = 775
				20h = 800
				21h = 850
				22h = 900
				23h = 950
				24h = 1000
				25h = 1050
				26h = 1100
				27h = 1150
				28h = 1200 20h = 1250
				29h = 1250 2Ah = 1300
				2Bh = 1350
				2Ch = 1400
				2Dh = 1450
				2Eh = 1500
				2Fh = 1550
				30h = 1600
				31h = 1700
				32h = 1800
				33h = 1900
				34h = 2000 35h = 2100
				35h = 2100 36h = 2200
				37h = 2300
				38h = 2400
				39h = 2600
				3Ah = 2800
				3Bh = 3000
				3Ch = 3200
				3Dh = 3400
				3Eh = 3600
				3Fh = 3800

表 8-16. CLOSED_LOOP3 Register Field Descriptions (continued)

	₹ 8-16. CLOSED_LOOP3 Register Field Descriptions (continued)							
Bit	Field	Туре	Reset	Description				
10-8	DYN_DGS_FILT_COUNT	R/W	Oh	Number of samples needed for dynamic degauss check 0h = 3 1h = 6 2h = 9 3h = 12 4h = 15 5h = 20 6h = 30 7h = 40				
7-6	DYN_DGS_UPPER_LIM	R/W	2h	Dynamic degauss voltage upper bound 0h = (VM - 0.09) V 1h = (VM - 0.12) V 2h = (VM - 0.15) V 3h = (VM - 0.18) V				
5-4	DYN_DGS_LOWER_LIM	R/W	2h	Dynamic degauss voltage lower bound 0h = 0.03 V 1h = 0.06 V 2h = 0.09 V 3h = 0.12 V				
3-1	DEGAUSS_MAX_WIN	R/W	Oh	Maximum degauss window $0h = 22.5^{\circ}$ $1h = 10^{\circ}$ $2h = 15^{\circ}$ $3h = 18^{\circ}$ $4h = 30^{\circ}$ $5h = 37.5^{\circ}$ $6h = 45^{\circ}$ $7h = 60^{\circ}$				
0	DYN_DEGAUSS_EN	R/W	0h	Dynamic degauss detection 0h = Disable 1h = Enable				

表 8-16. CLOSED_LOOP3 Register Field Descriptions (continued)

8.7.1.7 CLOSED_LOOP4 Register (Offset = 8Ch) [Reset = 0000000h]

CLOSED_LOOP4 is shown in $\underline{8855}$ and described in $\underline{8817}$.

Return to the Summary Table.

Register to configure close loop settings4

图 8-55. CLOSED_LOOP4 Register	er
-------------------------------	----

		¥					
31	30	29	28	27	26	25	24
PARITY	DYN_VOLT_SC ALING_EN				_NEG_CURR_L	IMIT	RESERVED
R/W-0h	R/W-0h	R/W-0h	R/W-0h		R/W-0h		
23	22	21	20	19	18	17	16
HYST_CURR_LIM_BAND FAST_DEC_			_DEG_TIME	WCOMP_BLAN K_EN	FA	ST_DEC_DUTY_V	WIN
R/W-0h R/W			/-0h R/W-0h R/W-0h				
15	14	13	12	11	10	9	8
FAS	ST_DEC_DUTY_T	ΉR		DYN_BRK_CU	RR_LOW_LIM		DYNAMIC_BRK _CURR
R/W-0h				R/W	/-0h		R/W-0h
7	6	5	4	3	2	1	0
FAST_DECEL_ EN		FAST_DECE	L_CURR_LIM			FAST_BRK_DELT	A
R/W-0h		R/W	/-0h			R/W-0h	

表 8-17. CLOSED_LOOP4 Register Field Descriptions

Bit	Field	Туре	Reset	Description	
31	PARITY	R/W	0h	Parity bit	
30	DYN_VOLT_SCALING_E N	R/W	Oh	Dynamic Voltage Scaling Enable 0h = Disable 1h = Enable	
29	HIGH_RES_SAMP	R/W	Oh	Sampling rate 0h = sampRate / 4 1h = sampRate / 8	
28	AVS_LIMIT_HYST	R/W	0h	AVS current hysteresis (AVS positive current limit (A) = ((AVS_LIMIT_HYST + AVS_NEG_CURR_LIMIT) * 3 /4095) / CSA_GAIN) 0h = 20 1h = 10	
30-27	RESERVED	R/W	0h	Reserved	
27-25	AVS_NEG_CURR_LIMIT	R/W	0h	AVS negative current limit (AVS negative current limit (A) = (AVS_NEG_CURRENT_LIMIT * 3 /4095) / CSA_GAIN) 0h = 0 1h = -60 2h = -40 3h = -30 4h = -20 5h = -10 6h = 15 7h = 30	
24	RESERVED	R/W	0h	Reserved	
23-22	HYST_CURR_LIM_BAND	R/W	Oh	Hysteresis Band during Fast Decel(if AVS Disabled) 0h = 0 1h = 100mV 2h = 200mV 3h = 400mV	

	MCT8317A
ZHCSQ32 -	JANUARY 2023

	表 8-17. CLOSED_LOOP4 Register Field Descriptions (continued)								
Bit	Field	Туре	Reset	Description					
21-20	FAST_DEC_DEG_TIME	R/W	Oh	Fast Decel Deglitch Time 0h = 2uS 1h = 4uS 2h = 8uS 3h = 14uS					
19	WCOMP_BLANK_EN	R/W	0h	Enable WCOMP blanking during fast deceleration 0h = Disable 1h = Enable					
18-16	FAST_DEC_DUTY_WIN	R/W	Oh	Fast deceleration duty window 0h = 0 % 1h = 2.5 % 2h = 5 % 3h = 7.5 % 4h = 10 % 5h = 15 % 6h = 20 % 7h = 25 %					
15-13	FAST_DEC_DUTY_THR	R/W	Oh	Fast deceleration duty threshold 0h = 100 % 1h = 95 % 2h = 90 % 3h = 85 % 4h = 80 % 5h = 75 % 6h = 70% 7h = 65 %					
12-9	DYN_BRK_CURR_LOW_ LIM	R/W	Oh	Fast deceleration dynamic current limit lower threshold (Deceleration current lower threshold (A) = DYN_BRK_CURR_LOW_LIM / CSA_GAIN) 0h = N/A 1h = 0.1V 2h = 0.2 V 3h = 0.3 V 4h = 0.4 V 5h = 0.5 V 6h = 0.6 V 7h = 0.7 V 8h = 0.8 V 9h = 0.9 V Ah = 1 V Bh = 1.1 V Ch = 1.2 V Dh = 1.3 V Eh = 1.4 V Fh = 1.5 V					
8	DYNAMIC_BRK_CURR	R/W	Oh	Enable dynamic decrease in current limit during fast deceleration 0h = Disable 1h = Enable					
7	FAST_DECEL_EN	R/W	Oh	Fast deceleration enable 0h = Disable 1h = Enable					

MCT8317A
ZHCSQ32 - JANUARY 2023

& 6-17. CLOSED_LOOP4 Register Field Descriptions (continued)							
Bit	Field	Туре	Reset	Description			
6-3	FAST_DECEL_CURR_LI	R/W	Oh	Deceleration current threshold (Fast Deceleration current limit upper threshold (A) = FAST_DECEL_CURR_LIM / CSA_GAIN) Oh = N/A 1h = 0.1V 2h = 0.2 V 3h = 0.3 V 4h = 0.4 V 5h = 0.5 V 6h = 0.6 V 7h = 0.7 V 8h = 0.8 V 9h = 0.9 V Ah = 1 V Bh = 1.1 V Ch = 1.2 V Dh = 1.3 V Eh = 1.4 V Fh = 1.5 V			
2-0	FAST_BRK_DELTA	R/W	Oh	Fast deceleration exit speed delta 0h = 0.5 % 1h = 1 % 2h = 1.5 % 3h = 2 % 4h = 2.5 % 5h = 3 % 6h = 4 % 7h = 5 %			

表 8-17. CLOSED_LOOP4 Register Field Descriptions (continued)

8.7.1.8 CONST_SPEED Register (Offset = 8Eh) [Reset = 0000000h]

CONST_SPEED is shown in 图 8-56 and described in 表 8-18.

Return to the Summary Table.

Register to configure Constant speed mode settings

	图 8-56. CONST_SPEED Register									
31	30	29	28	27	26	25	24			
PARITY	RESERVED			SPD_PO	WER_KP					
R/W-0h	R/W-0h			R/W	/-0h					
23	22	21	20	19	18	17	16			
	SPD_POWER_KP SPD_POWER_KI									
R/W-0h R/W-0h					/-0h					
15	14	13	12	11	10	9	8			
			SPD_PO	WER_KI						
	R/W-0h									
7	7 6 5 4 3 2 1 0									
SF	POWER_V_M	AX	SF	POWER_V_M	IN	CLOSED_L	OOP_MODE			
	R/W-0h			R/W-0h		R/V	V-0h			

表 8-18. CONST_SPEED Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30	RESERVED	R/W	0h	Reserved
29-20	SPD_POWER_KP	R/W	0h	Speed/ Power loop Kp (Kp = SPD_LOOP_KP / 10000)
19-8	SPD_POWER_KI	R/W	0h	Speed/ Power loop Ki (Ki = SPD_LOOP_KI / 1000000)
7-5	SPD_POWER_V_MAX	R/W	0h	Upper saturation limit for speed/ power loop 0h = 100 % 1h = 95 % 2h = 90 % 3h = 85 % 4h = 80 % 5h = 75 % 6h = 70% 7h = 65 %
4-2	SPD_POWER_V_MIN	R/W	Oh	Lower saturation limit for speed/power loop 0h = 0 % 1h = 2.5 % 2h = 5 % 3h = 7.5 % 4h = 10 % 5h = 15 % 6h = 20 % 7h = 25 %
1-0	CLOSED_LOOP_MODE	R/W	Oh	Closed loop mode Oh = Disabled 1h = Speed Loop 2h = Power Loop 3h = Reserved

 $Copyright @ 2023 \ Texas \ Instruments \ Incorporated \\$

8.7.1.9 CONST_PWR Register (Offset = 90h) [Reset = 0000000h]

CONST_PWR is shown in [8] 8-57 and described in [3] 8-19.

Return to the Summary Table.

Register to configure Constant power mode settings

图 8-57. CONST_PWR Register										
31	30	29	28	27	26	25	24			
PARITY				MAX_SPEED						
R/W-0h	R/W-0h									
23	22 21 20 19 18 17 16									
MAX_SPEED										
R/W-0h										
15	14	13	12	11	10	9	8			
MAX_SPEED				MAX_POWER						
R/W-0h				R/W-0h						
7	6	5	4	3	2	1	0			
	MAX_P	OWER		CONST_POWE	R_LIMIT_HYST	CONST_PO	WER_MODE			
R/W-0h R/W-0h										

表 8-19. CONST_PWR Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-15	MAX_SPEED	R/W	0h	Maximum Speed (Maximum Speed (Hz) = MAX_SPEED / 16)
14-4	MAX_POWER	R/W	0h	Maximum power (Maximum power (W) = MAX_POWER / 4)
3-2	CONST_POWER_LIMIT_ HYST	R/W	0h	Hysteresis for input power regulation 0h = 5 % 1h = 7.5 % 2h = 10 % 3h = 12.5 %
1-0	CONST_POWER_MODE	R/W	0h	Input power regulation mode Oh = Voltage Control mode 1h = Closed Loop Power Control 2h = Power Limit Control 3h = Reserved

8.7.1.10 150_DEG_TWO_PH_PROFILE Register (Offset = 96h) [Reset = 0000000h]

150_DEG_TWO_PH_PROFILE is shown in 图 8-58 and described in 表 8-20.

Return to the Summary Table.

Register to configure 150 degree modulation TWO phase duty

图 8-58. 150_DEG_TWO_PH_PROFILE Register

					- J					
31	30	29	28	27	26	25	24			
PARITY		TWOPH_STEP0			TWOPH_STEP1		TWOPH_STEP 2			
R/W-0h		R/W-0h			R/W-0h		R/W-0h			
23	22	21	20	19	18	17	16			
TWOPH	_STEP2		TWOPH_STEP3		TWOPH_STEP4			TWOPH_STEP4		
R/W	/-0h		R/W-0h	R/W-0h						
15	14	13	12	11	10	9	8			
	TWOPH_STEP5			TWOPH_STEP6		TWOPH	L_STEP7			
	R/W-0h		•	R/W-0h		R/V	V-0h			
7	6	5	4	3	2	1	0			
TWOPH_STEP 7				RESERVED						
R/W-0h				R/W-0h						

表 8-20. 150_DEG_TWO_PH_PROFILE Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-28	TWOPH_STEP0	R/W	0h	150° modulation , Two ph - step duty - 0 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
27-25	TWOPH_STEP1	R/W	0h	150° modulation , Two ph - step duty - 1 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
24-22	TWOPH_STEP2	R/W	Oh	150° modulation, Two ph - step duty - 2 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %

MCT8317	Α
ZHCSQ32 -	JANUARY 2023

	表 8-20. 150_DEG_	_TWO_PH_	PROFILE I	Register Field Descriptions (continued)
Bit Fie	əld	Туре	Reset	Description
21-19 TW	VOPH_STEP3	R/W	Oh	150° modulation, Two ph - step duty - 3 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
18-16 TW	VOPH_STEP4	R/W	Oh	150° modulation, Two ph - step duty - 4 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
15-13 TW	VOPH_STEP5	R/W	Oh	150° modulation, Two ph - step duty - 5 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
12-10 TW	VOPH_STEP6	R/W	Oh	150° modulation, Two ph - step duty - 6 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
9-7 TW	VOPH_STEP7	R/W	Oh	150° modulation, Two ph - step duty - 7 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
6-0 RE	SERVED	R/W	0h	Reserved

8.7.1.11 150_DEG_THREE_PH_PROFILE Register (Offset = 98h) [Reset = 0000000h]

150_DEG_THREE_PH_PROFILE is shown in 图 8-59 and described in 表 8-21.

Return to the Summary Table.

Register to configure 150 degree modulation Three phase duty

图 8-59. 150_DEG_THREE_PH_PROFILE Register

EP2			H H H H H H H H H H			- J			
R/W-0h R/W-0h R/W-0h R/W-0h 23 22 21 20 19 18 17 16 THREEPH_STEP2 THREEPH_STEP3 THREEPH_STEP4 THREEPH_STEP4 11 10 9 8 R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h 15 14 13 12 11 10 9 8 THREEPH_STEP5 THREEPH_STEP6 THREEPH_STEP7 R/W-0h R/W-0h 16 17 0 17 0 10	31	30	29	28	27	26	25	24	
$ \begin{array}{ c c c c c c } \hline 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 \\ \hline THREEPH_STEP2 & THREEPH_STEP3 & THREEPH_STEP4 \\ \hline R/W-0h & R/W-0h & R/W-0h \\ \hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 \\ \hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 \\ \hline THREEPH_STEP5 & THREEPH_STEP6 & THREEPH_STEP7 \\ \hline R/W-0h & R/W-0h & R/W-0h \\ \hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline THREEPH_ST & LEAD_ANGLE_150DEG_ADV & RESERVED \\ \hline \end{array} $	PARITY	-	THREEPH_STEP(0	THREEPH_STEP1			THREEPH_ST EP2	
$\begin{tabular}{ c c c c c } \hline THREEPH_STEP2 & THREEPH_STEP3 & THREEPH_STEP4 \\ \hline R/W-0h & R/W-0h & R/W-0h \\ \hline R/W-0h & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 \\ \hline $THREEPH_STEP5 & $THREEPH_STEP6$ & $THREEPH_STEP7$ \\ \hline R/W-0h & R/W-0h & R/W-0h \\ \hline $THREEPH_ST$ & $LEAD_ANGLE_150DEG_ADV$ & $RESERVED & $RESERVED$ \\ \hline \end{tabular}$	R/W-0h		R/W-0h		R/W-0h			R/W-0h	
R/W-0h R/W-0h R/W-0h 15 14 13 12 11 10 9 8 THREEPH_STEP5 THREEPH_STEP6 THREEPH_STEP7 R/W-0h R/W-0h R/W-0h 7 6 5 4 3 2 1 0 THREEPH_ST LEAD_ANGLE_150DEG_ADV RESERVED RESERVED	23	22	21	20	19	18	17	16	
15 14 13 12 11 10 9 8 THREEPH_STEP5 THREEPH_STEP6 THREEPH_STEP7 R/W-0h R/W-0h R/W-0h 7 6 5 4 3 2 1 0 THREEPH_ST LEAD_ANGLE_150DEG_ADV RESERVED RESERVED Lead <	THREEPH	H_STEP2	Г	THREEPH_STEP	3	T	THREEPH_STEP4		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R/W	R/W-0h			R/W-0h R/W-0h				
R/W-0h R/W-0h 7 6 5 4 3 2 1 0 THREEPH_ST EP7 LEAD_ANGLE_150DEG_ADV RESERVED RESERVED	15	14	13	12	11	10	9	8	
76543210THREEPH_ST EP7LEAD_ANGLE_150DEG_ADV EP7RESERVED	Т	HREEPH_STEP	5	-	THREEPH_STEP	26	'6 THREEPH_STEP7		
THREEPH_ST LEAD_ANGLE_150DEG_ADV RESERVED		R/W-0h		R/W-0h		R/W-0h			
EP7 EP7	7	6	5	4	3	2	1	0	
R/W-0h R/W-0h R/W-0h		LEAD_ANGLE	_150DEG_ADV			RESERVED			
	R/W-0h	R/M	V-0h			R/W-0h			

表 8-21. 150_DEG_THREE_PH_PROFILE Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-28	THREEPH_STEP0	R/W	Oh	150° modulation, Three ph - step duty - 0 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
27-25	THREEPH_STEP1	R/W	0h	150° modulation, Three ph - step duty - 1 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
24-22	THREEPH_STEP2	R/W	0h	150° modulation, Three ph - step duty - 2 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %

105

MCT8317A
ZHCSQ32 - JANUARY 2023

	表 8-21. 150_DEG_	THREE_PH	I_PROFILE	Register Field Descriptions (continued)
Bit	Field	Туре	Reset	Description
21-19	THREEPH_STEP3	R/W	Oh	150° modulation, Three ph - step duty - 3 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
18-16	THREEPH_STEP4	R/W	0h	150° modulation, Three ph - step duty - 4 0h = 0.0 % 1h = 0.5 % 2h = 0.75 % 3h = 0.8375 % 4h = 0.875 % 5h = 0.9375 % 6h = 0.975 % 7h = 0.99 %
15-13	THREEPH_STEP5	R/W	0h	150° modulation, Three ph - step duty - 5 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
12-10	THREEPH_STEP6	R/W	0h	150° modulation, Three ph - step duty - 6 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
9-7	THREEPH_STEP7	R/W	0h	150° modulation, Three ph - step duty - 7 0h = 0% 1h = 50 % 2h = 75 % 3h = 83.75 % 4h = 87.5 % 5h = 93.75 % 6h = 97.5 % 7h = 99 %
6-5	LEAD_ANGLE_150DEG_ ADV	R/W	0h	Angle advance for 150° modulation $0h = 0^{\circ}$ $1h = 5^{\circ}$ $2h = 10^{\circ}$ $3h = 15^{\circ}$
4-0	RESERVED	R/W	0h	Reserved
L	1	1	1	

8.7.1.12 REF_PROFILES1 Register (Offset = 9Ah) [Reset = X]

REF_PROFILES1 is shown in $\underline{\mathbb{8}}$ 8-60 and described in $\underline{\mathbf{\pi}}$ 8-22.

Return to the Summary Table.

Register to configure speed profile1

		图 8	-60. REF_PR	OFILES1 Reg	ister			
31	30	29	28	27	26	25	24	
PARITY	REF_PROFI	LE_CONFIG	DUTY_ON1					
R/W-0h	R/W-0h		R/W-X					
23	22	21	20	19	18	17	16	
	DUTY_ON1				DUTY_OFF1			
	R/W-X				R/W-X			
15	14	13	12	11	10	9	8	
	DUTY_OFF1			DUTY_CLAMP1				
	R/W-X				R/W-X			
7	6	5	4	3	2	1	0	
	DUTY_CLAMP1				DUTY_A			
	R/W-X				R/W-X			

表 8-22. REF_PROFILES1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-29	REF_PROFILE_CONFIG	R/W	Oh	Reference Profile Configuration 0h = Duty Control Mode 1h = Linear Mode 2h = Staircase Mode 3h = Forward Reverse Mode
28-21	DUTY_ON1	R/W	X	Duty_ON1 Configuration Turn On Duty Cycle (%) = {(DUTY_ON1/255)*100}
20-13	DUTY_OFF1	R/W	X	Duty_OFF1 Configuration Turn Off Duty Cycle (%) = {(DUTY_OFF1/255)*100}
12-5	DUTY_CLAMP1	R/W	X	Duty_CLAMP1 Configuration Duty Cycle for clamping speed (%) = {(DUTY_CLAMP1/255)*100}
4-0	DUTY_A	R/W	X	5 MSB bits for Duty Cycle A Duty Cycle A (%) = {(DUTY_A/ 255)*100}

8.7.1.13 REF_PROFILES2 Register (Offset = 9Ch) [Reset = X]

REF_PROFILES2 is shown in 图 8-61 and described in 表 8-23.

Return to the Summary Table.

Register to configure speed profile2

		图 8-	61. REF_PRO	OFILES2 Regi	ster				
31	30	29	28	27	26	25	24		
PARITY	DUTY_A			DUTY_B					
R/W-0h	R/W-X			R/W-X					
23	22	21	20	19	18	17	16		
	DUTY_B				DUTY_C				
	R/W-X			R/W-X					
15	14	13	12	11	10	9	8		
	DUTY_C				DUTY_D				
	R/W-X				R/W	/-X			
7	6	5	4	3	2	1	0		
	DUTY_D				DUT	Y_E			
R/W-X					R/W	-0h			

表 8-23. REF_PROFILES2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-28	DUTY_A	R/W	Х	3 LSB bits for Duty Cycle A Duty Cycle A (%) = {(DUTY_A/255)*100}
27-20	DUTY_B	R/W	Х	Duty_B Configuration Duty Cycle B (%) = {(DUTY_B/255)*100}
19-12	DUTY_C	R/W	Х	Duty_C Configuration Duty Cycle C (%) = {(DUTY_C/255)*100}
11-4	DUTY_D	R/W	Х	Duty_D Configuration Duty Cycle D (%) = {(DUTY_D/255)*100}
3-0	DUTY_E	R/W	0h	4 MSB bits for Duty Cycle E Duty Cycle E (%) = {(DUTY_E/ 255)*100}

8.7.1.14 REF_PROFILES3 Register (Offset = 9Eh) [Reset = X]

REF_PROFILES3 is shown in $\underline{\mathbb{8}}$ 8-62 and described in $\underline{\mathbf{\pi}}$ 8-24.

Return to the Summary Table.

Register to configure speed profile3

		图 8	-62. REF_PR0	OFILES3 Regi	ster		
31	30	29	28	27	26	25	24
PARITY		DUT	Y_E			DUTY_ON2	
R/W-0h		R/V	V-X			R/W-X	
23	22	21	20	19	18	17	16
		DUTY_ON2			DUTY_OFF2		
	R/W-X					R/W-X	
15	14	13	12	11	10	9	8
		DUTY_OFF2				DUTY_CLAMP2	2
		R/W-X		·		R/W-X	
7	6	5	4	3	2	1	0
DUTY_CLAMP2					STEP_HY	ST_BAND	RESERVED
		R/W-X		0	h	R/W-0h	

表 8-24. REF_PROFILES3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-27	DUTY_E	R/W	Х	4 LSB bits for Duty Cycle E Duty Cycle E (%) = {(DUTY_E/255)*100}
26-19	DUTY_ON2	R/W	X	Duty_ON2 Configuration Turn On Duty Cycle (%) = {(DUTY_ON2/255)*100}
18-11	DUTY_OFF2	R/W	X	Duty_OFF2 Configuration Turn Off Duty Cycle (%) = {(DUTY_OFF2/255)*100}
10-3	DUTY_CLAMP2	R/W	X	Duty_CLAMP2 Configuration Duty Cycle for clamping speed (%) = {(DUTY_CLAMP1/255)*100}
2-1	STEP_HYST_BAND		0h	Hysteresis band used for Step changes 0h = 0% 1h = 2% 2h = 4% 3h = 6%
0	RESERVED	R/W	0h	Reserved

8.7.1.15 REF_PROFILES4 Register (Offset = A0h) [Reset = X]

REF_PROFILES4 is shown in $\underline{8863}$ and described in $\underline{8825}$.

Return to the Summary Table.

Register to configure speed profile4

		图 8	-63. REF_PR	OFILES4 Regi	ster		
31	30	29	28	27	26	25	24
PARITY				REF_OFF1			
R/W-0h	R/W-X						
23	22	21	20	19	18	17	16
REF_OFF1	REF_CLAMP1						
R/W-X	R/W-X						
15	14	13	12	11	10	9	8
REF_CLAMP1				REF_A			
R/W-X				R/W-X			
7	6	5	4	3	2	1	0
REF_A	REF_B						
R/W-X				R/W-X			

表 8-25. REF	PROFILES4 Register Field Des	criptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-23	REF_OFF1	R/W	Х	Turn off Ref Configuration Turn off Reference % = {(REF_OFF1/255)*100}
22-15	REF_CLAMP1	R/W		Ref Clamp 1 Configuration Clamp REF % = {(REF_CLAMP1/255)*100}
14-7	REF_A	R/W	Х	Ref A configuration Ref A % = {(REF_A/255)*100}
6-0	REF_B	R/W	Х	7 MSB of REF_B configuration REF B% = {(REF_B/255)*100}

8.7.1.16 REF_PROFILES5 Register (Offset = A2h) [Reset = X]

REF_PROFILES5 is shown in 图 8-64 and described in 表 8-26.

Return to the Summary Table.

Register to configure speed profile5

		图 8	-64. REF_PR	OFILES5 Regi	ster		
31	30	29	28	27	26	25	24
PARITY	REF_B			REF	_C		
R/W-0h	R/W-X		R/W-X				
23	22	21	20	19	18	17	16
REF_C REF_D				_D			
R/\	N-X			R/W	/-X		
15	14	13	12	11	10	9	8
RE	F_D			REF	<u>_Е</u>		
R/\	N-X			R/W	<i>I-</i> X		
7	6	5	4	3	2	1	0
RE	F_E	RESERVED					
R/\	N-X			R/W	'-0h		

表 8-26. REF_PROFILES5 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30	REF_B	R/W	X	1 LSB of REF_B configuration REF B% = {(REF_B/255)*100}
29-22	REF_C	R/W	X	REF C configuration REF C % = {(REF_A/255)*100}
21-14	REF_D	R/W	Х	REF D configuration REF D % = {(REF_D/255)*100}
13-6	REF_E	R/W	Х	REF E Configuration REF E% = {(REF_E/255)*100}
5-0	RESERVED	R/W	0h	Reserved

8.7.1.17 REF_PROFILES6 Register (Offset = A4h) [Reset = X]

REF_PROFILES6 is shown in 图 8-65 and described in 表 8-27.

Return to the Summary Table.

Register to configure speed profile6

		图 8	-65. REF_PR	OFILES6 Regi	ster		
31	30	29	28	27	26	25	24
PARITY				REF_OFF2			
R/W-0h		R/W-X					
23	22	21	20	19	18	17	16
REF_OFF2	REF_CLAMP2						
R/W-X	R/W-X						
15	14	13	12	11	10	9	8
REF_CLAMP2				RESERVED			
R/W-X				R/W-X			
7	6	5	4	3	2	1	0
			RESE	ERVED			
			R/	W-X			

表 8-27. REF_PROFILES6 Register Field Descriptions

				-
Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-23	REF_OFF2	R/W	Х	Turn off REF Configuration Turn off REF % = {(REF_OFF2/255)*100}
22-15	REF_CLAMP2	R/W		Clamp REF Configuration Clamp REF % = {(REF_CLAMP2/255)*100}
14-0	RESERVED	R/W	Х	Reserved

8.7.2 Fault_Configuration Registers

表 8-28 lists the memory-mapped registers for the Fault Configuration registers. All register offset addresses not listed in $\frac{1}{8}$ 8-28 should be considered as reserved locations and the register contents should not be modified.

表 8-28. FAULT_CONFIGURATION Registers

Offset	Acronym	Register Name	Section
92h	FAULT_CONFIG1	Fault configuration 1	FAULT_CONFIG1 Register (Offset = 92h) [Reset = 00000000h]
94h	FAULT_CONFIG2	Fault configuration 2	FAULT_CONFIG2 Register (Offset = 94h) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. 表 8-29 shows the codes that are used for access types in this section.

表 8-29. Fault_Configuration Access Type Codes						
Access Type Code Description						
Read Type						
R	R	Read				
Write Type	1					
W Write						
Reset or Default Value						

表 8-29. Fault_Configuration Access Type Codes (continued)

Access Type	Code	Description
-n		Value after reset or the default value

8.7.2.1 FAULT_CONFIG1 Register (Offset = 92h) [Reset = 0000000h]

FAULT_CONFIG1 is shown in 图 8-66 and described in 表 8-30.

Return to the Summary Table.

Register to configure fault settings1

图 8-66. FAULT_CONFIG1 Register

		— -					
31	30	29	28	27	26	25	24
PARITY	N	D_MTR_DEG_TIM	ИE		CBC_ILIM	IT_MODE	
R/W-0h		R/W-0h			R/W	'-0h	
23	22	21	20	19	18	17	16
		LOCK_ILIMIT			LC	CK_ILIMIT_MO	DE
	R/W-0h					R/W-0h	
15	14	13	12	11	10	9	8
LOCK_ILIMIT_ MODE		LOCK_ILI	MIT_DEG		CBC	_RETRY_PWM_	CYC
R/W-0h	R/W-0h					R/W-0h	
7	6 5 4			3	2	1	0
RESERVED		MTR_LC	K_MODE			LCK_RETRY	
R/W-0h	·	R/V	V-0h			R/W-0h	

表 8-30. FAULT_CONFIG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-28	NO_MTR_DEG_TIME	R/W	Oh	No motor detect deglitch time 0h = 1 ms 1h = 10 ms 2h = 25 ms 3h = 50 ms 4h = 100 ms 5h = 250 ms 6h = 500 ms 7h = 1000 ms
27-24	CBC_ILIMIT_MODE	R/W	Oh	Cycle by cycle current limit Oh = Automatic recovery next PWM cycle; nFAULT active; driver is in recirculation mode 1h = Automatic recovery next PWM cycle; nFAULT inactive; driver is in recirculation mode 2h = Automatic recovery if VSOX < ILIMIT; nFAULT active; driver is in recirculation mode (Only available with high-side modulation) 3h = Automatic recovery if VSOX < ILIMIT; nFAULT inactive; driver is in recirculation mode (Only available with high-side modulation) 4h = Automatic recovery after CBC_RETRY_PWM_CYC; nFAULT active; driver is in recirculation mode 5h = Automatic recovery after CBC_RETRY_PWM_CYC; nFAULT inactive; driver is in recirculation mode 6h = VSOX > ILIMIT is report only but no action is taken 7h = Cycle by Cycle limit is disabled 8h = Cycle by Cycle limit is disabled Ah = Cycle by Cycle limit is disabled Bh = Cycle by Cycle lim

ADVANCE INFORMATION

Dit				er Field Descriptions (continued)
Bit	Field	Туре	Reset	Description
23-19	LOCK_ILIMIT	R/W	Oh	Lock detection current limit (Lock detection current limit (A) = LOCK_ILIMIT / CSA_GAIN) 0h = 0.0 V 1h = 0.1 V 2h = 0.2 V 3h = 0.3 V 4h = 0.4 V 5h = 0.5 V 6h = 0.6 V 7h = 0.7 V 8h = 0.8 V 9h = 0.9 V Ah = 1.0 V Bh = 1.1 V Ch = 1.2 V Dh = 1.3 V Eh = 1.4 V Fh = 1.5 V 10h = N/A 11h = N/A 12h = N/A 13h = N/A 16h = N/A 17h = N/A 18h = N/A 19h = N/A 10h = N/A 19h = N/A 19
18-15	LOCK_ILIMIT_MODE	R/W	Oh	Lock detection current limit mode 0h = Ilimit lock detection causes latched fault; nFAULT active; Gate driver is tristated 1h = Ilimit lock detection causes latched fault; nFAULT active; Gate driver is in recirculation mode 2h = Ilimit lock detection causes latched fault; nFAULT active; Gate driver is in high-side brake mode (All high-side FETs are turned ON) 3h = Ilimit lock detection causes latched fault; nFAULT active; Gate driver is in low-side brake mode (All low-side FETs are turned ON) 4h = Automatic recovery after tLCK_RETRY; Gate driver is tristated 5h = Automatic recovery after tLCK_RETRY; Gate driver is in high- side brake mode (All high-side FETs are turned ON) 7h = Automatic recovery after tLCK_RETRY; Gate driver is in high- side brake mode (All high-side FETs are turned ON) 7h = Automatic recovery after tLCK_RETRY; Gate driver is in low- side brake mode (All low-side FETs are turned ON) 8h = Ilimit lock detection is in report only but no action is taken 9h = Ilimit lock detection is disabled Ah = Ilimit lock detection is disabled Bh = Ilimit lock detection is disabled Ch = Ilimit lock detection is disabled Fh = Ilimit lock detection is disabled

表 8-30. FAULT_CONFIG1 Register Field Descriptions (continued)

MCT8317	Α
ZHCSQ32 -	JANUARY 2023

	表 8-30. FAULT_CONFIG1 Register Field Descriptions (continued)					
Bit	Field	Туре	Reset	Description		
14-11	LOCK_ILIMIT_DEG	R/W	Oh	Lock detection current limit deglitch time 0h = 1 ms 1h = 2 ms 2h = 5 ms 3h = 10 ms 4h = 25 ms 5h = 50 ms 6h = 75 ms 7h = 100 ms 8h = 250 ms 9h = 500 ms Ah = 1 s Bh = 2.5 s Ch = 5 s Dh = 10 s Eh = 25 s Fh = 50 s		
10-8	CBC_RETRY_PWM_CYC	R/W	Oh	Number of PWM cycles for CBC current limit to retry 0h = 0 1h = 1 2h = 2 3h = 3 4h = 4 5h = 5 6h = 6 7h = 7		
7	RESERVED	R/W	0h	Reserved		
6-3	MTR_LCK_MODE	R/W	0h	Motor lock mode Oh = Motor lock detection causes latched fault; nFAULT active; Gate driver is tristated 1h = Motor lock detection causes latched fault; nFAULT active; Gate driver is in recirculation mode 2h = Motor lock detection causes latched fault; nFAULT active; Gate driver is in high-side brake mode (All high-side FETs are turned ON) 3h = Motor lock detection causes latched fault; nFAULT active; Gate driver is in low-side brake mode (All low-side FETs are turned ON) 4h = Automatic recovery after tLCK_RETRY; Gate driver is tristated 5h = Automatic recovery after tLCK_RETRY; Gate driver is in high- side brake mode (All high-side FETs are turned ON) 7h = Automatic recovery after tLCK_RETRY; Gate driver is in high- side brake mode (All high-side FETs are turned ON) 7h = Automatic recovery after tLCK_RETRY; Gate driver is in low- side brake mode (All low-side FETs are turned ON) 8h = Motor lock detection is in report only but no action is taken 9h = Motor lock detection is disabled Bh = Motor lock detection is disabled Ch = Motor lock detection is disabled Bh = Motor lock detection is disabled Fh = Motor lock detection is disabled		
2-0	LCK_RETRY	R/W	Oh	Lock retry time 0h = 100 ms 1h = 500 ms 2h = 1000 ms 3h = 2000 ms 4h = 3000 ms 5h = 5000 ms 6h = 7500 ms 7h = 10000 ms		

8.7.2.2 FAULT_CONFIG2 Register (Offset = 94h) [Reset = 0000000h]

FAULT_CONFIG2 is shown in $\underline{\mathbb{8}}$ 8-67 and described in $\underline{\mathbb{7}}$ 8-31.

Return to the Summary Table.

Register to configure fault settings2

图 8-67. FAULT_CONFIG2 Register

		• •					
31	30	29	28	27	26	25	24
PARITY	ABN_SPD_EN	LOSS_OF_SYN C_EN	NO_MOTOR_E N		LOCK_A	3N_SPEED	
R/W-0h	R/W-0h	R/W-0h	R/W-0h		R/\	N-0h	
23	22	21	20	19	18	17	16
LC	DSS_SYNC_TIME	ES		NO_MTR_THR		MAX_VM_MOD E	MAX_VM_MOT OR
	R/W-0h			R/W-0h		R/W-0h	R/W-0h
15	14	13	12	11	10	9	8
MAX_VM	_MOTOR	MIN_VM_MOD E	I	MIN_VM_MOTOR		AUTO_RET	RY_TIMES
R/W	/-0h	R/W-0h	-	R/W-0h		R/W	V-0h
7	6	5	4	3	2	1	0
AUTO_RETRY_ TIMES			D	ABN_LOCK_S	PD_RATIO	ZERO_DI	UTY_THR
R/W-0h		R/W-0h		R/W-0	Dh	R/W	V-0h

表 8-31. FAULT_CONFIG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description			
31	PARITY	R/W	0h	Parity bit			
30	ABN_SPD_EN	R/W	0h	Abnormal Speed Enable 0h = Disable 1h = Enable			
29	LOSS_OF_SYNC_EN	R/W	0h	Loss of Sync Enable 0h = Disable 1h = Enable			
28	NO_MOTOR_EN	R/W	0h	No Motor Enable 0h = Disable 1h = Enable			
27-24	LOCK_ABN_SPEED	R/W	Oh	Abnormal speed lock threshold 0h = 250 Hz 1h = 500 Hz 2h = 750 Hz 3h = 1000 Hz 4h = 1250 Hz 5h = 1500 Hz 6h = 1750 Hz 7h = 2000 Hz 8h = 2250 Hz 9h = 2500 Hz Ah = 2750 Hz Bh = 3000 Hz Ch = 3250 Hz Dh = 3500 Hz Fh = 4000 Hz			

MCT8317	4
ZHCSQ32 -	JANUARY 2023

	表 8-31. FAULT_CONFIG2 Register Field Descriptions (continued)					
Bit	Field	Туре	Reset	Description		
23-21	LOSS_SYNC_TIMES	R/W	Oh	Number of times sync lost for loss of sync lock fault Oh = Trigger after losing sync 2 times 1h = Trigger after losing sync 3 times 2h = Trigger after losing sync 4 times 3h = Trigger after losing sync 5 times 4h = Trigger after losing sync 6 times 5h = Trigger after losing sync 7 times 6h = Trigger after losing sync 8 times 7h = Trigger after losing sync 9 times		
20-18	NO_MTR_THR	R/W	Oh	No motor lock current threshold (No motor lock current threshold (A) = NO_MTR_THR / CSA_GAIN) 0h = $0.005 V$ 1h = $0.0075 V$ 2h = $0.010 V$ 3h = $0.0125 V$ 4h = $0.020 V$ 5h = $0.025 V$ 6h = $0.030 V$ 7h = $0.04 V$		
17	MAX_VM_MODE	R/W	0h	0h = Latch on Overvoltage 1h = Automatic clear if voltage in bounds		
16-14	MAX_VM_MOTOR	R/W	Oh	Maximum voltage for running motor 0h = No Limit 1h = 10.0 V 2h = 12.0 V 3h = 14.0 V 4h = 16.0 V 5h = 18.0 V 6h = 19.0 V 7h = 20.0 V		
13	MIN_VM_MODE	R/W	Oh	0h = Latch on Undervoltage 1h = Automatic clear if voltage in bounds		
12-10	MIN_VM_MOTOR	R/W	Oh	Minimum voltage for running motor 0h = No Limit 1h = 5.0 V 2h = 6.0 V 3h = 7.0 V 4h = 8.0 V 5h = 9.0 V 6h = 10.0 V 7h = 12.0 V		
9-7	AUTO_RETRY_TIMES	R/W	Oh	Number of automatic retry attempts 0h = No Limit 1h = 2 2h = 3 3h = 5 4h = 7 5h = 10 6h = 15 7h = 20		
6-4	LOCK_MIN_SPEED	R/W	Oh	Speed below which lock fault is triggered 0h = 0.5 Hz 1h = 1 Hz 2h = 2 Hz 3h = 3 Hz 4h = 5 Hz 5h = 10 Hz 6h = 15 Hz 7h = 25 Hz		

表 8-31. FAULT_	CONFIG2 Register	Field Descriptions	(continued)	

Bit	Field	Туре	Reset	Description
3-2	ABN_LOCK_SPD_RATIO	R/W	Oh	Ratio of electrical speed between two consecutive cycles above which abnormal speed lock fault is triggered 0h = 2 1h = 4 2h = 6 3h = 8
1-0	ZERO_DUTY_THR	R/W	0h	Duty cycle below which target speed is zero 0h = 0% 1h = 1% 2h = 2.0% 3h = 2.5%

8.7.3 Hardware_Configuration Registers

8-32 lists the memory-mapped registers for the Hardware_Configuration registers. All register offset addresses not listed in **8-32** should be considered as reserved locations and the register contents should not be modified.

表 8-32. HARDWARE_CONFIGURATION Registers

		—	
Offset	Acronym	Register Name	Section
A6h	PIN_CONFIG1	Hardware pin configuration	PIN_CONFIG1 Register (Offset = A6h) [Reset = 00000000h]
A8h	PIN_CONFIG2	Hardware pin configuration	PIN_CONFIG2 Register (Offset = A8h) [Reset = 00000000h]
AAh	DEVICE_CONFIG	Peripheral configuration	DEVICE_CONFIG Register (Offset = AAh) [Reset = 00002000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-33 shows the codes that are used for access types in this section.

表 8-33. Hardware_Configuration Access Type Codes

00403						
Access Type	Code	Description				
Read Type	Read Type					
R	R	Read				
Write Type	Write Type					
W	W	Write				
Reset or Default	Reset or Default Value					
-n		Value after reset or the default value				

8.7.3.1 PIN_CONFIG1 Register (Offset = A6h) [Reset = 0000000h]

PIN_CONFIG1 is shown in $\underline{8}$ 8-68 and described in $\underline{7}$ 8-34.

Return to the Summary Table.

Register to configure hardware pins

		图	8-68. PIN_CC	NFIG1 Regist	ter		
31	30	29	28	27	26	25	24
PARITY			DA	COUT1_VAR_AD	DR		
R/W-0h				R/W-0h			
23	22	21	20	19	18	17	16
	DACOUT1_VAR_ADDR DACOUT2_VAR_ADDR						DDR
		R/W-0h				R/W-0h	
15	14	13	12	11	10	9	8
			DACOUT2_	VAR_ADDR			
			R/V	/-0h			
7	6	5	4	3	2	1	0
DACOUT2_VA R_ADDR	BRAKE_INPUT DIR_INPUT			NPUT	SPD_CTF	RL_MODE	Alarm_Pin
R/W-0h	R/W	/-0h	R/W	/-0h	R/W	/-0h	R/W-0h

表 8-34. PIN_CONFIG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-19	DACOUT1_VAR_ADDR	R/W	0h	12-bit address of variable to be monitored on Pin 33
18-7	DACOUT2_VAR_ADDR	R/W	0h	12-bit address of variable to be monitored on Pin 34
6-5	BRAKE_INPUT	R/W	Oh	Brake input configuration on Pin 31 0h = Hardware Pin BRAKE 1h = Overwrite Hardware pin with Active Brake 2h = Overwrite Hardware pin with brake functionality disabled 3h = N/A
4-3	DIR_INPUT	R/W	Oh	Direction input configuration on Pin 28 Oh = Hardware Pin DIR 1h = Overwrite Hardware pin with clockwise rotation OUTA-OUTB- OUTC 3h = N/A
2-1	SPD_CTRL_MODE	R/W	Oh	Speed input configuration on Pin 24 Oh = Analog mode speed Input 1h = PWM Mode Speed Input 2h = I2C Speed Input mode 3h = Frequency based speed Input mode
0	Alarm_Pin	R/W	Oh	Alarm Pin GPIO configuration on Pin 35 0h = Disabled (Hi-Z) 1h = Enabled

8.7.3.2 PIN_CONFIG2 Register (Offset = A8h) [Reset = 0000000h]

PIN_CONFIG2 is shown in 图 8-69 and described in 表 8-35.

Return to the Summary Table.

Register to configure hardware pins

	图 8-69. PIN_CONFIG2 Register						
31	30	29	28	27	26	25	24
PARITY	DAC_SO	CONFIG	SLEEF	P_TIME	12	C_TARGET_ADD	R
R/W-0h	R/V	V-0h	R/V	V-0h		R/W-0h	
23	22	21	20	19	18	17	16
	I2C_TARG	ET_ADDR		DAC_OUT_EN	EXT_WD_EN	EXT_WD_INPU T	EXT_WD_FAUL T
	R/V	V-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0h
15	14	13	12	11	10	9	8
EXT_W	D_FREQ	FG_CONFIG	FG_PIN_FA	JLT_CONFIG	FG_PIN_ST	FG_PIN_STOP_CONFIG	
R/V	R/W-0h R/W-0h		R/W-0h		R/W-0h		R/W-0h
7	6	5	4	3	2	1	0
TBLANK			TPWDTH			ZERO_DUTY_HYST	
	R/W-0h			R/W-0h		R/V	V-0h

表 8-35. PIN_CONFIG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-29	DAC_SOX_CONFIG	R/W	Oh	DAC/SOx Pin 32 Configuration 0h = DACOUT2 1h = SOA 2h = SOB 3h = SOC
28-27	SLEEP_TIME	R/W	Oh	Sleep Time $0h = Check \text{ low for 50 } \mu \text{s}$ $1h = Check \text{ low for 200 } \mu \text{s}$ 2h = Check low for 20 ms 3h = Check low for 200 ms
26-20	I2C_TARGET_ADDR	R/W	0h	I2C target address
19	DAC_OUT_EN	R/W	0h	Enable DAC Outputs 0h = Disable 1h = Enable
18	EXT_WD_EN	R/W	0h	Enable external watchdog on pin29 0h = Disable 1h = Enable
17	EXT_WD_INPUT	R/W	0h	External watchdog source 0h = I2C 1h = GPIO
16	EXT_WD_FAULT	R/W	0h	External watchdog fault mode 0h = Report only 1h = Latched fault with Hi-Z outputs
15-14	EXT_WD_FREQ	R/W	Oh	External watchdog frequency 0h = 10Hz 1h = 5Hz 2h = 2Hz 3h = 1Hz

MCT8317A
ZHCSQ32 - JANUARY 2023

	表 8-35. PIN_CONFIG2 Register Field Descriptions (continued)						
Bit	Field	Туре	Reset	Description			
13	FG_CONFIG	R/W	Oh	Fault on FG Pin Configuration Oh = FG active till BEMF drops below BEMF threshold defined by FG_BEMF_THR 1h = FG toggle as long as motor is actively driven			
12-11	FG_PIN_FAULT_CONFIG	R/W	Oh	Fault on FG Pin Configuration 0h = FG continues to toggle till motor stops 1h = FG in Hi-Z state, pulled up externally 2h = FG pulled Low 3h = N/A			
10-9	FG_PIN_STOP_CONFIG	R/W	0h	FG upon Motor Stop Configuration 0h = FG continues to toggle till motor stops 1h = FG in Hi-Z state, pulled up externally 2h = FG pulled Low 3h = N/A			
8-5	TBLANK	R/W	0h	Blanking time after PWM edge $0h = 0 \ \mu s$ $1h = 1 \ \mu s$ $2h = 2 \ \mu s$ $3h = 3 \ \mu s$ $4h = 4 \ \mu s$ $5h = 5 \ \mu s$ $6h = 6 \ \mu s$ $7h = 7 \ \mu s$ $8h = 8 \ \mu s$ $9h = 9 \ \mu s$ $Ah = 10 \ \mu s$ $Bh = 11 \ \mu s$ $Ch = 12 \ \mu s$ $Dh = 13 \ \mu s$ $Eh = 14 \ \mu s$ $Fh = 15 \ \mu s$			
4-2	TPWDTH	R/W	Oh	Comparator deglitch time $0h = 0 \ \mu s$ $1h = 1 \ \mu s$ $2h = 2 \ \mu s$ $3h = 3 \ \mu s$ $4h = 4 \ \mu s$ $5h = 5 \ \mu s$ $6h = 6 \ \mu s$ $7h = 7 \ \mu s$			
1-0	ZERO_DUTY_HYST	R/W	Oh	Duty cycle hysteresis to exit standby 0h = 0 % 1h = 1 % 2h = 2 % 3h = 3 %			

8.7.3.3 DEVICE_CONFIG Register (Offset = AAh) [Reset = 00002000h]

DEVICE_CONFIG is shown in 图 8-70 and described in 表 8-36.

Return to the Summary Table.

Register to peripheral1

图 8-70. DEVICE_CONFIG Register							
31	30	29	28	27	26	25	24
PARITY			INPL	JT_MAX_FREQU	ENCY		
R/W-0h				R/W-0h			
23	22	21	20	19	18	17	16
			INPUT_MAX_	FREQUENCY			
			R/V	V-0h			
15	14	13	12	11	10	9	8
RESERVED	SSM_CONFIG	RESEF	RVED	DEV_MODE	SPD_PWM_RA NGE_SELECT	CLI	K_SEL
R/W-0h	R/W-0h	R/W-	-2h	R/W-0h	R/W-0h	R/	W-0h
7	6	5	4	3	2	1	0
EXT_CLK_EN	E	XT_CLK_CONFIG	i		DIG_DEAI	D_TIME	
R/W-0h		R/W-0h		·	R/W-	0h	

表 8-36. DEVICE_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-16	INPUT_MAX_FREQUENC Y	R/W	0h	Maximum frequency (in Hz) for frequency based speed input
15	RESERVED	R/W	0h	Reserved
14	SSM_CONFIG	R/W	Oh	SSM enable 0h = Enable 1h = Disable
13-12	RESERVED	R/W	2h	Reserved
11	DEV_MODE	R/W	Oh	Device mode select 0h = Standby mode 1h = Sleep mode
10	SPD_PWM_RANGE_SEL ECT	R/W	Oh	PWM frequency range select 0h = 325 Hz to 100 kHz speed PWM input 1h = 10 Hz to 325 Hz speed PWM input
9-8	CLK_SEL	R/W	0h	Clock source 0h = Internal Oscillator 1h = N/A 2h = N/A 3h = External Clock input
7	EXT_CLK_EN	R/W	Oh	External clock enable 0h = Disable 1h = Enable
6-4	EXT_CLK_CONFIG	R/W	Oh	External clock frequency 0h = 8 kHz 1h = 16 kHz 2h = 32 kHz 3h = 64 kHz 4h = 128 kHz 5h = 256 kHz 6h = 512 kHz 7h = 1024 kHz

123

Field	Туре	Reset	Description				
DIG_DEAD_TIME	R/W	0h	Dead time added by digital controller to gate input signals				
			0h = 0ns				
			1h = 50ns				
			2h = 100ns				
			3h = 150ns				
			4h = 200ns				
			5h = 250ns				
			6h = 300ns				
			7h = 350ns				
			8h = 400ns				
			9h = 450ns				
			Ah = 500ns				
			Bh = 600ns				
			Ch = 700ns				
			Dh = 800ns				
			Eh = 900ns				
			Fh = 1000ns				
	Field	Field Type	Field Type Reset				

表 8-36. DEVICE_CONFIG Register Field Descriptions (continued)

8.7.4 Gate_Driver_Configuration Registers

8-37 lists the memory-mapped registers for the Gate_Driver_Configuration registers. All register offset addresses not listed in 8-37 should be considered as reserved locations and the register contents should not be modified.

表 8-37. GATE_DRIVER_CONFIGURATION Registers

Offset	Acronym	Register Name	Section
ACh	GD_CONFIG1	Gate driver configuration 1	GD_CONFIG1 Register (Offset = ACh) [Reset = 00000000h]
AEh	GD_CONFIG2	Gate driver configuration 2	GD_CONFIG2 Register (Offset = AEh) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-38 shows the codes that are used for access types in this section.

	Codes					
Access Type	Code	Description				
Read Type						
R	R	Read				
Write Type						
W	W	Write				
Reset or Defaul	Reset or Default Value					
-n		Value after reset or the default value				

表 8-38. Gate_Driver_Configuration Access Type Codes

8.7.4.1 GD_CONFIG1 Register (Offset = ACh) [Reset = 0000000h]

GD_CONFIG1 is shown in 8 8-71 and described in 8 8-39.

Return to the Summary Table.

Register to configure gated driver settings1

	图 8-71. GD_CONFIG1 Register							
31	30	29	28	27	26	25	24	
PARITY	RESERVED	RESE	ERVED	RESE	RVED	OCP_	MODE	
R/W-0h	R/W-0h	R/\	V-0h	R/W	R/W-0h		R/W-0h	
23	22	21	20	19	18	17	16	
OCP_MODE	RESERVED	OCP	_DEG	OCP_TBLANK		TRETRY		
R/W-0h	R/W-0h	R/\	V-0h	R/W-0h		R/W-0h		
15	14	13	12	11	10	9	8	
RESE	RVED		DLY_TARGET			DLYCMP_EN	SLEW_RATE	
R/M	R/W-0h			N-0h		R/W-0h	R/W-0h	
7	6	5	4	3	2	1	0	
SLEW_RATE	CSA_	GAIN	RESERVED					
R/W-0h	R/M	V-0h			R/W-0h			

表 8-39. GD_CONFIG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30	RESERVED	R/W	0h	Reserved
29-28	RESERVED	R/W	0h	Reserved
27-26	RESERVED	R/W	0h	Reserved
25-23	OCP_MODE	R/W	Oh	OCP MODE Oh = Report on nFAULT, latch into status register, predriver Hi-Z, auto recover with retry time 1h = Reserved 2h = Report on nFAULT, latch into status register, predriver Hi-Z, no auto recovery, wait for CLR_FLT 3h = Report on nFAULT, latch into status register, no action on predriver 4h = Reserved 5h = Reserved 6h = Reserved 7h = Disabled
22	RESERVED	R/W	0h	Reserved
21-20	OCP_DEG	R/W	Oh	OCP Deglitch time $0h = 0.3 \ \mu s$ $1h = 0.7 \ \mu s$ $2h = 1 \ \mu s$ $3h = 1.2 \ \mu s$
19-18	OCP_TBLANK	R/W	Oh	OCP Blanking Time $0h = 0.3 \ \mu s$ $1h = 0.6 \ \mu s$ $2h = 1 \ \mu s$ $3h = 1.2 \ \mu s$
17-16	TRETRY	R/W	Oh	Retry Time Oh = 0.5 s 1h = 1 s 2h = 2 s 3h = 5 s
15-14	RESERVED	R/W	0h	Reserved

_	表 8-39. GD_CONFIG1 Register Field Descriptions (continued)							
	Bit	Field	Туре	Reset	Description			
	13-10	DLY_TARGET	R/W	Oh	Delay Target Value = 200ns * Value 0h = 0 1h = 200ns 2h = 400ns 3h = 600ns 4h = 800ns 5h = 1000ns 6h = 1200ns 7h = 1400ns 8h = 1600ns 9h = 1800ns Ah = 200ns Bh = 2200ns Ch = 2400ns Dh = 2600ns Eh = 2800ns Fh = 3000ns			
	9	DLYCMP_EN	R/W	Oh	Delay Compensation Enabled 0h = Disabled 1h = Enabled			
	8-7	SLEW_RATE	R/W	0h	Slew Rate 0h = 25V/µs 1h = 50V/µs 2h = 125V/µs 3h = 200V/µs			
	6-5	CSA_GAIN	R/W	0h	Current Sense Amplifier (CSA) Gain 0h = 0.25V/A 1h = 0.5V/A 2h = 1V/A 3h = 2V/A			
	4-0	RESERVED	R/W	0h	Reserved			

表 8-39. GD_CONFIG1 Register Field Descriptions (continued)

8.7.4.2 GD_CONFIG2 Register (Offset = AEh) [Reset = 0000000h]

GD_CONFIG2 is shown in 图 8-72 and described in 表 8-40.

Return to the Summary Table.

Register to configure gated driver settings2

图 8-72. GD_CONFIG2 Register							
31	30	29	28	27	26	25	24
PARITY				RESERVED			
R/W-0h				R/W-0h			
23	22	21	20	19	18	17	16
	RESERVED						
	R/W-0h						
15	14	13	12	11	10	9	8
			RESE	ERVED			
			R/V	V-0h			
7	6	5	4	3	2	1	0
	RESERVED						
			R/V	V-0h			

表 8-40. GD_CONFIG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	PARITY	R/W	0h	Parity bit
30-0	RESERVED	R/W	0h	Reserved

8.8 RAM (Volatile) Register Map

8.8.1 Fault_Status Registers

8-41 lists the memory-mapped registers for the Fault_Status registers. All register offset addresses not listed in **8-41** should be considered as reserved locations and the register contents should not be modified.

		表 8-41. FAULT_STATUS Registers	
Offset	Acronym	Register Name	Section
E0h	GATE_DRIVER_FAULT_STATUS	Fault Status Register	GATE_DRIVER_FAULT_STATUS Register (Offset = E0h) [Reset = 00000000h]
E2h	CONTROLLER_FAULT_STATUS	Fault Status Register	CONTROLLER_FAULT_STATUS Register (Offset = E2h) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{8}$ 8-42 shows the codes that are used for access types in this section.

Access Type	Code	Description				
Read Type						
R	R	Read				
Reset or Default Value						
-n		Value after reset or the default value				

8.8.1.1 GATE_DRIVER_FAULT_STATUS Register (Offset = E0h) [Reset = 0000000h]

GATE_DRIVER_FAULT_STATUS is shown in 图 8-73 and described in 表 8-43.

Return to the Summary Table.

Status of various faults

	图 8-73. GATE_DRIVER_FAULT_STATUS Register							
31	30	29	28	27	26	25	24	
DRIVER_FAUL T				RESERVED				
R-0h			R-0h					
23	22	21	20	19	18	17	16	
	RESERVED							
			R-	0h				
15	14	13	12	11	10	9	8	
RESERVED	OCP	RESET	SYSFLT	OVP	CP_UV	VM_UV	RESERVED	
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	
7	6	5	4	3	2	1	0	
OTW	OTS	RESE	RESERVED		AVDD_UV	VINAVDD_UV	AVDD_OCP	
R-0h	R-0h	R	0h	R-0h	R-0h	R-0h	R-0h	

表 8-43. GATE_DRIVER_FAULT_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	DRIVER_FAULT	R	0h	Logic OR of driver fault registers 0h = No Gate Driver fault condition is detected 1h = Gate Driver fault condition is detected
30-15	RESERVED	R	0h	Reserved
14	OCP	R	0h	Over current protection 0h = No overcurrent condition is detected 1h = Overcurrent condition is detected
13	RESET	R	0h	Power On Reset 0h = Powerup condition is detected 1h = Powerup condition is cleared
12	SYSFLT	R	0h	System Fault 0h = No system fault is detected 1h = system fault is detected
11	OVP	R	0h	Over voltage protection 0h = No overvoltage condition is detected on VM 1h = Overvoltage condition is detected on VM
10	CP_UV	R	0h	Charge pump undervoltage 0h = No undervoltage condition is detected on CP 1h = Undervoltage condition is detected on CP
9	VM_UV	R	0h	VM undervoltage 0h = No undervoltage condition is detected on VM 1h = Undervoltage condition is detected on VM
8	RESERVED	R	0h	Reserved
7	OTW	R	0h	Over temperature warning 0h = No overtemperature warning is detected 1h = Overtemperature warning is detected
6	OTS	R	0h	Over temperature shutdown 0h = No overtemperature shutdown is detected 1h = Overtemperature shutdown is detected
5-4	RESERVED	R	0h	Reserved

表 8-43. GATE_DRIVER_FAULT_STATUS Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3	SPI_FLT	R	0h	SPI faults 0h = No SPI fault is detected 1h = SPI fault is detected
2	AVDD_UV	R	0h	AVDD undervoltage 0h = No undervoltage condition is detected on AVDD 1h = Undervoltage condition is detected on AVDD
1	VINAVDD_UV	R	0h	VINAVDD undervoltage 0h = No undervoltage condition is detected on VIN_AVDD 1h = Undervoltage condition is detected on VIN_AVDD
0	AVDD_OCP	R	0h	AVDD OCP fault 0h = No overcurrent condition is detected on AVDD LDO 1h = Overcurrent condition is detected on AVDD LDO

8.8.1.2 CONTROLLER_FAULT_STATUS Register (Offset = E2h) [Reset = 0000000h]

CONTROLLER_FAULT_STATUS is shown in 图 8-74 and described in 表 8-44.

Return to the Summary Table.

Status of various faults

图 8-74. CONTROLLER_FAULT_STATUS Register

31	30	29	28	27	26	25	24			
CONTROLLER _FAULT	RESERVED	IPD_FREQ_FA ULT	IPD_T1_FAULT	IPD_T2_FAULT						
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h					
23	22	21	20	19	18	17	16			
ABN_SPEED	LOSS_OF_SYN C	NO_MTR	MTR_LCK	CBC_ILIMIT	LOCK_ILIMIT	MTR_UNDER_ VOLTAGE	MTR_OVER_V OLTAGE			
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h				
15	14	13	12	11	10	9	8			
EXT_WD_TIME OUT				RESERVED						
R-0h				R-0h						
7	6	5	4	3	2	1	0			
		RESERVED			STL_EN	STL_STATUS	APP_RESET			
		R-0h			R-0h	R-0h	R-0h			

表 8-44. CONTROLLER_FAULT_STATUS Register Field Descriptions

Bit			Reset	Description
31	CONTROLLER_FAULT	R	Oh	Logic OR of controller fault registers 0h = No controller fault condition is detected 1h = Controller fault condition is detected
30	RESERVED	R	0h	Reserved
29	IPD_FREQ_FAULT	R	Oh	Indicates IPD frequency fault 0h = No IPD frequency fault detected 1h = IPD frequency fault detected
28	IPD_T1_FAULT	R	Oh	Indicates IPD T1 fault 0h = No IPD T1 fault detected 1h = IPD T1 fault detected
27	IPD_T2_FAULT	R	Oh	Indicates IPD T2 fault 0h = No IPD T2 fault detected 1h = IPD T2 fault detected
26-24	RESERVED	R	0h	Reserved
23	ABN_SPEED	R	Oh	Indicates abnormal speed motor lock condition 0h = No abnormal speed fault detected 1h = Abnormal Speed fault detected
22	LOSS_OF_SYNC	R	Oh	Indicates sync lost motor lock condition 0h = No sync lost fault detected 1h = Sync lost fault detected
21	NO_MTR	R	Oh	Indicates no motor fault Oh = No motor fault not detected 1h = No motor fault detected
20	MTR_LCK	R	Oh	Indicates when one of the motor lock is triggered 0h = Motor lock fault not detected 1h = Motor lock fault detected
19	CBC_ILIMIT	R	Oh	Indicates CBC current limit fault 0h = No CBC fault detected 1h = CBC fault detected

表 8-44. CONTROLLER_FAULT_STATUS Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
18	LOCK_ILIMIT	R	0h	Indicates lock detection current limit fault Oh = No lock current limit fault detected 1h = Lock current limit fault detected
17	MTR_UNDER_VOLTAGE	R	0h	Indicates motor undervoltage fault Oh = No motor undervoltage detected 1h = Motor undervoltage detected
16	MTR_OVER_VOLTAGE	R	0h	Indicates motor overvoltage fault Oh = No motor overvoltage detected 1h = Motor overvoltage detected
15	EXT_WD_TIMEOUT	R	0h	Indicates external watchdog timeout fault Oh = No external watchdog timeout fault detected 1h = External watchdog timeout fault detected
14-3	RESERVED	R	0h	Reserved
2	STL_EN	R	0h	Indicates STL is enabled in EEPROM 0h = STL Disable 1h = STL Enable
1	STL_STATUS	R	0h	Indicates STL success criteria Pass = 1b; Fail = 0b 0h = STL Fail 1h = STL Pass
0	APP_RESET	R	Oh	App reset 0h = App Reset Fail 1h = App Reset Successful

8.8.2 System_Status Registers

 $\frac{1}{8}$ 8-45 lists the memory-mapped registers for the System_Status registers. All register offset addresses not listed in $\frac{1}{8}$ 8-45 should be considered as reserved locations and the register contents should not be modified.

表 8-45. SYSTEM_STATUS Registers

			- <u>-</u>
Offset	Acronym	Register Name	Section
E4h	SYS_STATUS1	System Status Register1	SYS_STATUS1 Register (Offset = E4h) [Reset = 00000000h]
EAh	SYS_STATUS2	System Status Register2	SYS_STATUS2 Register (Offset = EAh) [Reset = 00000000h]
ECh	SYS_STATUS3	System Status Register3	SYS_STATUS3 Register (Offset = ECh) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-46 shows the codes that are used for access types in this section.

Access Type	Code	Description										
Read Type		-										
R	R	Read										
Reset or Defaul	t Value	-										
-n		Value after reset or the default value										

表 8-46. System_Status Access Type Codes

8.8.2.1 SYS_STATUS1 Register (Offset = E4h) [Reset = 0000000h]

SYS_STATUS1 is shown in $\underline{8}$ 8-75 and described in $\underline{8}$ 8-47.

Return to the Summary Table.

Status of various system and motor parameters

		图	8-75. SYS_ST	ATUS1 Regis	ter							
31	30	29	24									
	VOLT_MAG											
	R-0h											
23	22	21	20	19	18	17	16					
			VOLT	_MAG								
R-0h												
15	14	13	12	11	10	9	8					
			SPEED	D_CMD								
			R-	0h								
7	6	5	4	3	2	1	0					
	SPEED_CMD											
	R-0h											

表 8-47. SYS_STATUS1 Register Field Descriptions

				• •
Bit	Field	Туре	Reset	Description
31-16	VOLT_MAG	R	0h	Applied DC input voltage (/10 to get DC input voltage in V)
15-1	SPEED_CMD	R	0h	Decoded speed command in PWM/Analog/Freq. mode (SPEED_CMD (%) = SPEED_CMD/32767 * 100%)
0	I2C_ENTRY_STATUS	R	Oh	Indicates if I2C entry has happened 0h = I2C mode not entered through pin sequence 1h = I2C mode entered through pin sequence

ADVANCE INFORMATION

8.8.2.2 SYS_STATUS2 Register (Offset = EAh) [Reset = 0000000h]

SYS_STATUS2 is shown in 图 8-76 and described in 表 8-48.

Return to the Summary Table.

Status of various system and motor parameters

	图 8-76. SYS_STATUS2 Register									
31	30	29	26	25	24					
	STA	TE			RES	ERVED				
	R-()h			F	≀- 0h				
23	22	21	20	19	18	17	16			
		RESE	RVED			STL_FAULT	RESERVED			
		R-(Oh			R-0h	R-0h			
15	14	13	12	11	10	9	8			
			MOTOR	_SPEED						
			R-	0h						
7	6	5	4	3	2	1	0			
MOTOR_SPEED										
			R-	0h						

表 8-48. SYS_STATUS2 Register Field Descriptions

			-	Description					
Bit	Field	Туре	Reset	Description					
31-28	STATE	R	Oh	Current status of state machine; 4-bit value indicating status of state machine Oh = SYSTEM_IDLE 1h = MOTOR_START 2h = MOTOR_RUN 3h = SYSTEM_INIT 4h = MOTOR_IPD 5h = MOTOR_ALIGN 6h = MOTOR_IDLE 7h = MOTOR_STOP 8h = FAULT 9h = MOTOR_DIRECTION Ah = HALL_ALIGN Ch = MOTOR_CALIBRATE Dh = MOTOR_DESCEL Eh = MOTOR_BRAKE Fh = N/A					
27-18	RESERVED	R	0h	Reserved					
17	STL_FAULT	R	0h	STL fault status 0h = Pass 1h = Fail					
16	RESERVED	R	0h	Reserved					
15-0	MOTOR_SPEED	R	0h	Speed output (/10 to get motor electrical speed in Hz)					

8.8.2.3 SYS_STATUS3 Register (Offset = ECh) [Reset = 0000000h]

SYS_STATUS3 is shown in 图 8-77 and described in 表 8-49.

Return to the Summary Table.

Status of various system and motor parameters

图 8-77. SYS_STATUS3 Register

																			-												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						DC_	BUS	s_cl	JRR													DC_	BAT	Т_Р	WO						
							R-	0h															R-	0h							

表 8-49. SYS_STATUS3 Register Field Descriptions

Bit	Field	Туре	Reset	Description					
31-16	DC_BUS_CURR	R	0h	DC bus current (/256 to get DC bus current in A)					
15-0	DC_BATT_POW	R	0h	Battery (input) power (/64 to get battery power in W)					

8.8.3 Algo_Control Registers

8-50 lists the memory-mapped registers for the Algo_Control registers. All register offset addresses not listed in **8-50** should be considered as reserved locations and the register contents should not be modified.

表 8-50. ALGO_CONTROL Registers

			J
Offset	Acronym	Register Name	Section
E6h	ALGO_CTRL1	Algorithm Control Parameters	ALGO_CTRL1 Register (Offset = E6h) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-51 shows the codes that are used for access types in this section.

Access Type	Code	Description										
Write Type												
W	W	Write										
Reset or Default Value												
-n		Value after reset or the default value										

表 8-51. Algo Control Access Type Codes

MCT8317A ZHCSQ32 - JANUARY 2023

8.8.3.1 ALGO_CTRL1 Register (Offset = E6h) [Reset = 0000000h]

ALGO_CTRL1 is shown in 图 8-78 and described in 表 8-52.

Return to the Summary Table.

Algorithm Control Parameters

		121	0-70. ALOO_		ISICI								
31	30	29	28	27	26	25	24						
EEPROM_WRT	EEPROM_REA D	CLR_FLT	CLR_FLT_RET RY_COUNT		EEPROM_WRITE_ACCESS_KEY								
W-0h	W-0h	W-0h	W-0h		W-	0h							
23	22	21	20	20 19 18 17									
	EEPROM_WRITE	_ACCESS_KEY		RESERVED									
	W-(Oh		W-0h									
15 14 13		13	12	11	10	9	8						
			RESE	RVED									
			W-	0h									
7	6	5	4	3	2	1	0						
			RESERVED				EXT_WD_STAT US_SET						
			W-0h				W-0h						

图 8-78. ALGO CTRL1 Register

表 8-52. ALGO_CTRL1 Register Field Descriptions

		Type Reset Description W 0h Write the configuration to EEPROM 1h = Write to the EEPROM registers from shadow registers W 0h Read the default configuration from EEPROM 1h = Read the EEPROM registers to shadow registers W 0h Clears all faults 1h = Clear all the driver and controller faults							
Bit	Field	Туре	Reset	Description					
31	EEPROM_WRT	W	0h	Write the configuration to EEPROM 1h = Write to the EEPROM registers from shadow registers					
30	EEPROM_READ	W	0h	U U U U U U U U U U U U U U U U U U U					
29	CLR_FLT	W	0h						
28	CLR_FLT_RETRY_COUN T	W	0h	Clears fault retry count 1h = clear the lock fault retry counts					
27-20	EEPROM_WRITE_ACCE SS_KEY	W	0h	EEPROM write access key; 8-bit key to unlock the EEPROM write command					
19-1	RESERVED	W	0h	Reserved					
0	EXT_WD_STATUS_SET	0h = Reset autor		Watchdog status to be set by external MCU in I2C watchdog mode 0h = Reset automatically 1h = To set the EXT_WD_STATUS_SET					

8.8.4 Device_Control Registers

 $\frac{1}{8}$ 8-53 lists the memory-mapped registers for the Device_Control registers. All register offset addresses not listed in $\frac{1}{8}$ 8-53 should be considered as reserved locations and the register contents should not be modified.

表 8-53. DEVICE_CONTROL Registers

Offset	Acronym	Register Name	Section
E8h	DEVICE_CTRL	Device Control Parameters	DEVICE_CTRL Register (Offset = E8h) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-54 shows the codes that are used for access types in this section.

Access Type	Code	Description
Read Type		1
R	R	Read
Write Type		
W	W	Write
Reset or Defau	It Value	
-n		Value after reset or the default value

表 8-54. Device_Control Access Type Codes

8.8.4.1 DEVICE_CTRL Register (Offset = E8h) [Reset = 0000000h]

DEVICE_CTRL is shown in 图 8-79 and described in 表 8-55.

Return to the Summary Table.

Device Control Parameters

		图	8-79. DEVICE	_CTRL Regis	ter									
31	30	29	28	27	26	25	24							
RESERVED				SPEED_CTRL										
W-0h				W-0h										
23	22													
SPEED_CTRL														
W-0h														
15	14	13	12	11	10	9	8							
OVERRIDE				RESERVED										
W-0h				R-0h										
7	6	5	4	3	2	1	0							
			RESE	RVED										
			R-	0h										

表 8-55. DEVICE_CTRL Register Field Descriptions

Bit	Field	Туре	Reset	Description
31	RESERVED	W	0h	Reserved
30-16	SPEED_CTRL	W	0h	Digital speed command (SPEED_CTRL (%) = SPEED_CTRL/32767 * 100%)
15	OVERRIDE	W	0h	Speed input select for I2C vs speed pin 0h = SPEED_CMD using Analog/Freq/PWM mode 1h = SPEED_CMD using SPD_CTRL[14:0]
14-0	RESERVED	R	0h	Reserved

8.8.5 Algorithm_Variables Registers

 $\frac{1}{8}$ 8-56 lists the memory-mapped registers for the Algorithm_Variables registers. All register offset addresses not listed in $\frac{1}{8}$ 8-56 should be considered as reserved locations and the register contents should not be modified.

表 8-56. ALGORITHM_VARIABLES Registers

Offset	Acronym	Register Name	Section
40Ch	INPUT_DUTY	Input Duty Cycle	INPUT_DUTY Register (Offset = 40Ch) [Reset = 00000000h]
512h	CURRENT_DUTY	Current Duty Cycle	CURRENT_DUTY Register (Offset = 512h) [Reset = 00000000h]
522h	SET_DUTY	Set Duty Cycle	SET_DUTY Register (Offset = 522h) [Reset = 00000000h]
5CEh	MOTOR_SPEED_PU	Motor Speed in PU	MOTOR_SPEED_PU Register (Offset = 5CEh) [Reset = 00000000h]
714h	DC_BUS_POWER_PU	DC Bus Power in PU	DC_BUS_POWER_PU Register (Offset = 714h) [Reset = 00000000h]

Complex bit access types are encoded to fit into small table cells. $\frac{1}{2}$ 8-57 shows the codes that are used for access types in this section.

Access Type	Code	Description										
Read Type												
R	R	Read										
Reset or Default Value												
-n		Value after reset or the default value										

表 8-57. Algorithm_Variables Access Type Codes

8.8.5.1 INPUT_DUTY Register (Offset = 40Ch) [Reset = 0000000h]

INPUT_DUTY is shown in 图 8-80 and described in 表 8-58.

Return to the Summary Table.

Input duty cycle

图 8-80. INPUT_DUTY Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	INPUT_DUTY																														
	R-0h																														

表 8-58. INPUT_DUTY Register Field Descriptions

Bit	Field	Туре	Reset	Description
31-0	INPUT_DUTY	R		32-bit value indicating the duty cycle that the user commands Input duty cycle (in %) = (Input Duty Cycle / 2^{30}) * 100

8.8.5.2 CURRENT_DUTY Register (Offset = 512h) [Reset = 0000000h]

CURRENT_DUTY is shown in 图 8-81 and described in 表 8-59.

Return to the Summary Table.

Current duty cycle

图 8-81. CURRENT_DUTY Register

31	3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CURRENT_DUTY																															
	R-0h																															

		••••••••		
Bit	Field	Туре	Reset	Description
31-0	CURRENT_DUTY	R		32-bit value indicating the duty cycle that is currently being applied. Current duty cycle (in %) = (Current Duty Cycle / 2^{30}) * 100

表 8-59. CURRENT_DUTY Register Field Descriptions

8.8.5.3 SET_DUTY Register (Offset = 522h) [Reset = 0000000h]

SET_DUTY is shown in 图 8-82 and described in 表 8-60.

Return to the Summary Table.

Target duty cycle

图 8-82. SET_DUTY Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														S	ET_	DUT	Ϋ́														
															R-	0h															

表 8-60. SET_DUTY Register Field Descriptions

Bit	Field	Туре	Reset	Description
31-0	SET_DUTY	R		32-bit value indicating the duty cycle that the FW wants. Set duty cycle (in %) = (Set Duty Cycle / 2^{30}) * 100

8.8.5.4 MOTOR_SPEED_PU Register (Offset = 5CEh) [Reset = 0000000h]

MOTOR_SPEED_PU is shown in 图 8-83 and described in 表 8-61.

Return to the Summary Table.

Motor speed in PU

图 8-83. MOTOR_SPEED_PU Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													М	отс	R_S	PEE	D_F	บ													
															R-	0h															

_					
	Bit	Field	Туре	Reset	Description
	31-0	MOTOR_SPEED_PU	R		32-bit value indicating the speed of the motor. Motor speed (in Hz) = (Motor Speed in PU / 2^{30}) * (MAX_SPEED / 16)

表 8-61. MOTOR_SPEED_PU Register Field Descriptions

8.8.5.5 DC_BUS_POWER_PU Register (Offset = 714h) [Reset = 0000000h]

DC_BUS_POWER_PU is shown in 图 8-84 and described in 表 8-62.

Return to the Summary Table.

DC bus power in PU

图 8-84. DC_BUS_POWER_PU Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													DC	_BL	JS_P	WO	ER_	PU													
															R-	0h															

表 8-62. DC_BUS_POWER_PU Register Field Descriptions

Bit	Field	Туре	Reset	Description
31-0	DC_BUS_POWER_PU	R		32-bit value indicating the power drawn by the motor. DC Bus Power (in W) = (DC Bus Power in PU / 2^{30}) * (MAX_POWER / 4)

9 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The MCT8317A device is used in sensorless 3-phase BLDC motor control. The driver provides a high performance, high-reliability, flexible solution for robotic vacuum, fuel pumps, automotive fans and blowers, medical CPAP blowers etc., The following section shows a common application of the MCT8317A device.

9.2 Typical Applications

图 9-1 shows the typical schematic of MCT8317A.

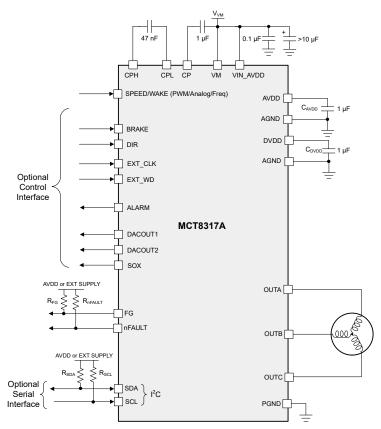


图 9-1. Example Application Schematic

 $\frac{1}{8}$ 9-1 lists the recommended values of the external components for MCT8317A.

COMPONENTS	PIN 1	PIN 2	RECOMMENDED					
C _{VM1}	VM	PGND	X5R or X7R, 0.1-μF, TI recommends a capacitor voltage rating at least twice the normal operating voltage of the device					
C _{VM2}	VM	PGND	\geqslant 10- $\mu F,TI$ recommends a capacitor voltage rating at least twice the normal operating voltage of the device					

表 9-1. MCT8317A External Components

COMPONENTS	PIN 1	PIN 2	RECOMMENDED
C _{CP}	СР	VM	X5R or X7R, 16-V, 1-µF capacitor
C _{FLY}	СРН	CPL	X5R or X7R, 47-nF, TI recommends a capacitor voltage rating at least twice the normal operating voltage of the pin
C _{AVDD}	AVDD	AGND	X5R or X7R, 1-μF, ≥ 6.3-V. In order for AVDD to accurately regulate output voltage, capacitor shou have effective capacitance between 0.7-μF to 1.3- at 3.3-V across operating temperature.
C _{DVDD}	AVDD	AGND	X5R or X7R, 1-µF, ≥ 4-V. In order for DVDD to accurately regulate output voltage, capacitor shou have effective capacitance between 0.6-µF to 1.3- at 1.5-V across operating temperature.
R _{FG}	1.8 to 5-V Supply	FG	5.1-k Ω , Pull-up resistor
R _{nFAULT}	1.8 to 5-V Supply	nFAULT	5.1-k Ω , Pull-up resistor
R _{SDA}	1.8 to 3.3-V Supply	SDA	5.1-k Ω , Pull-up resistor
R _{SCL}	1.8 to 3.3-V Supply	SCL	5.1-k Ω , Pull-up resistor

Recommended application range for MCT8317A is shown in $\frac{1}{2}$ 9-2.

表 9-2.	Recommended Applicat	ion Range
	recounting and a phone	lon nungo

A 5-2. Recommended Application Range							
Parameter	Min	Max	Unit				
Motor voltage	4.5	35	V				
Motor electrical speed	-	3000	Hz				
Peak motor phase current	-	8	A				

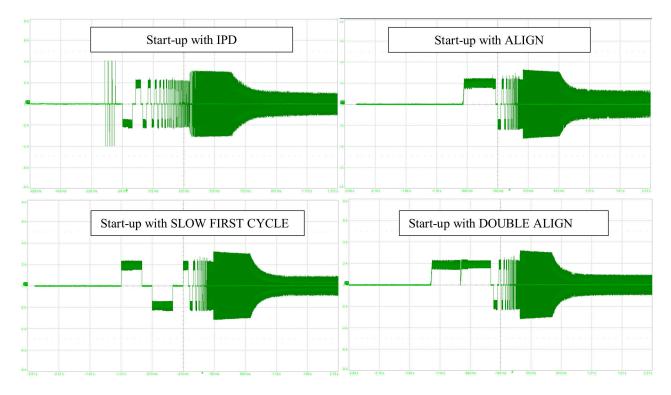
Default EEPROM configuration for MCT8317A is listed in 表 9-3. Default values are chosen for reliable motor start-up and closed loop operation. Refer to MCT8317A tuning guide which provides step by step procedure to tune a 3-phase BLDC motor in closed loop, conform to use-case and explore features in the device.

Address Name	表 9-3. Recommended	Recommended Value
ISD_CONFIG	0x0000080	0x6EC4C100
MOTOR_STARTUP1	0x0000082	0x2EA610E4
MOTOR_STARTUP2	0x0000084	0x1221109C
CLOSED_LOOP1	0x0000086	0x0C321200
CLOSED_LOOP2	0x0000088	0x024224B0
CLOSED_LOOP3	0x000008A	0x4CCC03E0
CLOSED_LOOP4	0x000008C	0x000CE944
CONST_SPEED	0x000008E	0x00A00510
CONST_PWR	0x0000090	0x5DC04C84
FAULT_CONFIG1	0x0000092	0x60F43025
FAULT_CONFIG2	0x0000094	0x7F87A009
TRAP_CONFIG1	0x000009A	0x0548A186
TRAP_CONFIG2	0x000009C	0x3A840000
150_DEG_TWO_PH_PROFILE	0x0000096	0x6ADB44A6
150_DEG_THREE_PH_PROFILE	0x0000098	0x392DFF80
PIN_CONFIG1	0x00000A4	0x2D720600
PIN_CONFIG2	0x00000A6	0x08000000
DEVICE_CONFIG	0x000000A8	0x7FFF0000
PERIPH_CONFIG	0x00000AA	0x0000000
Na secondaria de la constancia de la const		

commanded Default Values

表 9-3. Recommended Default Values (continued)							
GD_CONFIG1	0x00000AC	0x1C440000					
GD_CONFIG2	0x00000AE	0x0000000					

Once the device EEPROM is programmed with the desired configuration, device can be operated stand-alone and I²C serial interface is not required anymore. Speed can be commanded using SPEED pin.

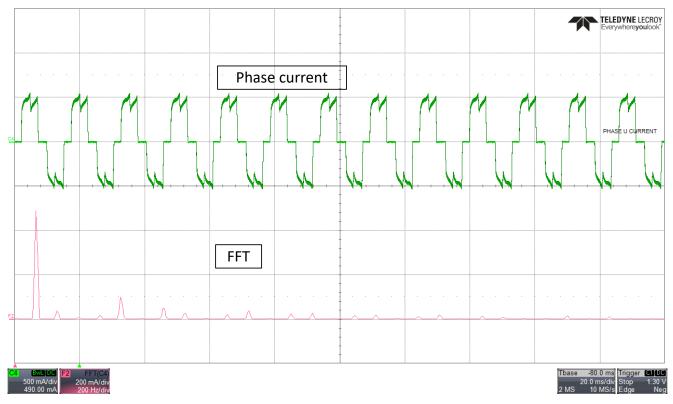

Below are the two essential parameters that are required to spin the motor in closed loop.

- 1. Maximum motor speed.
- 2. Cycle by cycle (CBC) current limit.

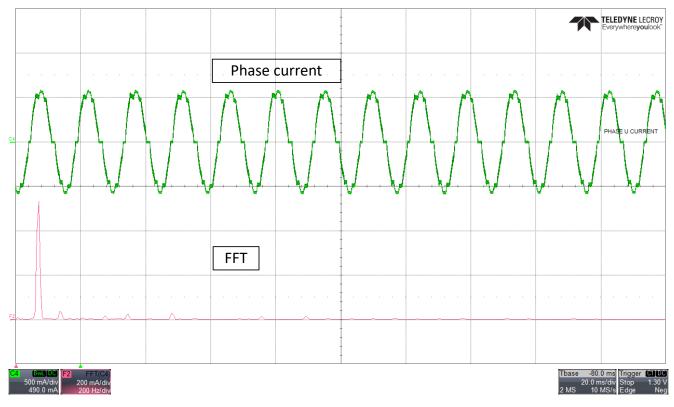
9.2.1 Application curves

9.2.1.1 Motor startup

图 9-2 shows the phase current waveforms of various startup methods in MCT8317A such as align, double align, IPD and slow first cycle.


图 9-2. Motor phase current waveforms of all startup methods

9.2.1.2 120° and variable commutation


In 120° commutation scheme, each motor phase is driven for 120° and Hi-Z for 60° within each half electrical cycle, resulting in six different commutation states for a motor. 🛛 9-3 shows the phase current and current waveform FFT in 120° commutation mode. In variable commutation scheme, MCT8317A device switches dynamically between 120° and 150° trapezoidal commutation depending on motor speed. The device operates



in 150° mode at lower speeds and moves to 120° mode at higher speeds. 🛛 9-4 shows the phase current and current waveform FFT in 150° commutation.

9.2.1.3 Faster startup time

Startup time is the time taken for the motor to reach the target speed from zero speed. Faster startup time can be achieved in MCT8317A by tuning motor startup, open loop and closed loop settings. 🛛 9-5 shows FG, phase current and motor electrical speed waveform. Motor takes 50 ms to reach target speed from zero speed.

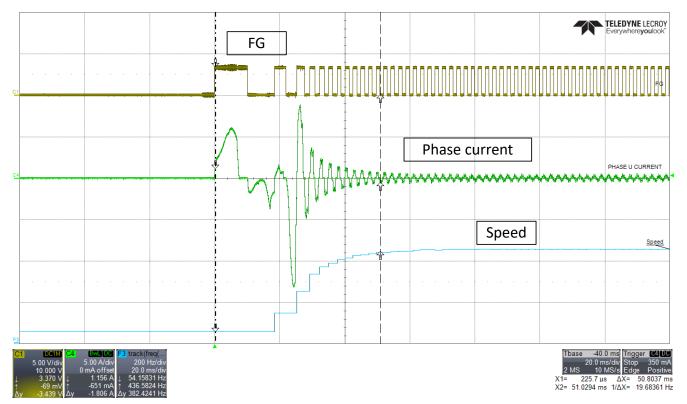
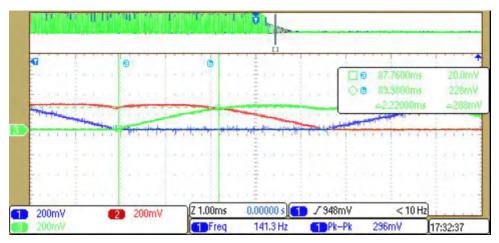



图 9-5. Phase current, FG and motor speed - Faster startup time

9.2.1.4 Setting the BEMF threshold

The BEMF_THRESHOLD1 and BEMF_THRESHOLD2 values used for commutation instant detection in MCT8317A can be computed from the motor phase voltage waveforms during coasting. For example, consider the three-phase voltage waveforms of a BLDC motor while coasting as in 🕅 9-6. The motor phase voltage during coasting is the motor back-EMF.

In 🕅 9-6, one floating phase voltage interval is denoted by the vertical markers on channel 3. The Vpeak (peak-peak back-EMF) on channel 3 is 208-mV and Tc (commutation interval) is 2.22-ms as denoted by the horizontal and vertical markers on channel 3. The digital equivalent counts for Vpeak and Tc are calculated as follows.

In MCT8317A, a 3-V analog input corresponds to 4095 counts(12-bit) and phase voltage is scaled down by 10x factor before ADC input; therfore, Vpeak of 208-mV corresponds to an ADC input of 20.8mV, which in turn equals 29 ADC counts. Assuming the PWM switching frequency is 25-kHz, one back-EMF sample is available every 40- μ s. So, in a time interval of 2.22-ms, a total of 55 back-EMF samples are integrated. Therefore, the BEMF_THRESHOLD1 or BEMF_THRESHOLD2 value calculated is (1/2) * (29/2) * (55/2) = 199. Hence, in this example, BEMF_THRESHOLD1 and BEMF_THRESHOLD2 are set to 8h (corresponding to 200 which is the closest value to 199) for commutation instant detection using back-EMF integration method during fast start-up. The exact speed at which the Vpeak and Tc values are measured to calculate the BEMF_THRESHOLD1 and BEMF_THRESHOLD2 values is not critical (as long as there is sufficient resolution in digital counts) since the product (Vpeak * Tc) is, largely, a constant for a given BLDC motor.

9.2.1.5 Maximum speed

图 9-7 shows phase current, phase voltage and FG of a motor that spins at maximum electrical speed of 3 kHz.

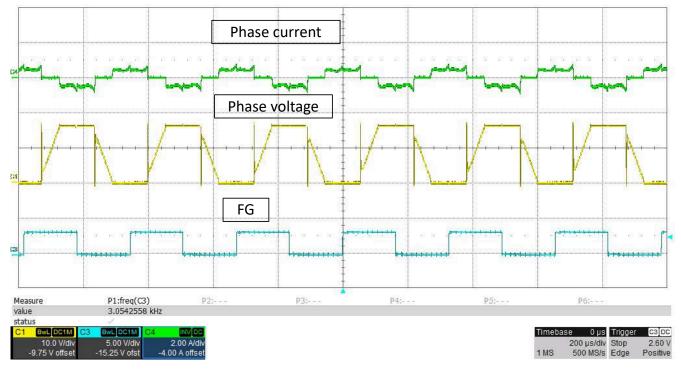
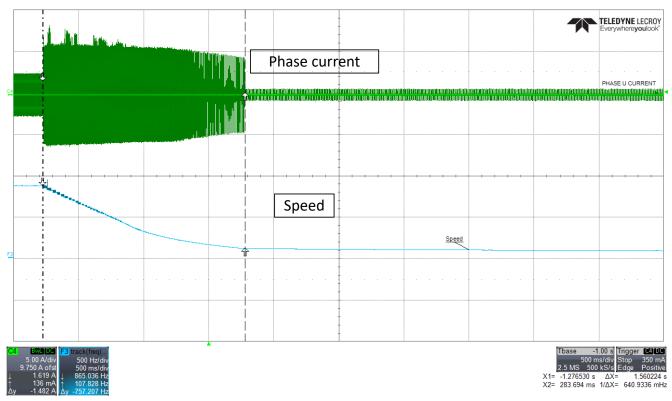


图 9-7. Phase current, Phase voltage and FG at Maximum speed

9.2.1.6 Faster deceleration

MCT8317A has features to decelerate the motor quickly. 🕅 9-8 shows phase current and motor electrical speed waveform when the motor decelerates from 100% duty cycle to 10% duty cycle. Time taken for the motor to decelerate from 100% duty cycle to 10% duty cycle when fast deceleration is disabled is around 10 seconds. 🕅 9-9 shows phase current and motor electrical speed waveform when the motor decelerates from 100% duty cycle to 10% duty cycle to 10% duty cycle to 10% duty cycle when fast decelerate from 100% duty cycle. Time taken for the motor to decelerate from 100% duty cycle to 10% duty cycle when fast deceleration is enabled is around 1.5 seconds.

备注


Please note that when fast deceleration is enabled and anti-voltage surge (AVS) is disabled, there might be voltage spikes seen in supply voltage. Enable AVS to protect the power supply from voltage overshoots during motor deceleration.

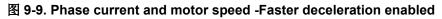

					-		*	TELEDYNE LECROY Everywhereyoulook
C4		· · · · · · · · · · · · · · · · · · ·	Phase	e current	 	 		PHASE U CURRENT
					-			
						 l L + + + +		
		4		Speed	*			
<u>F3</u>				Speed	 - - - -			
					 · · · · ·	 		
					-		These	
C4 ↓ ↑	5.00 A/div 5 9.750 A ofst -49 mA ↓ -31 mA ↑ 8	500 Hz/div 2.00 s/div 81.434 Hz 54.707 Hz					X1= 8.03715 s	Image C4 DD s/div Stop 350 mA kS/s Edge Positive ΔX= -10.01247 1/ΔX= -99.87546 mH -99.87546 -10.01247

图 9-8. Phase current and motor speed - Faster deceleration disabled

10 Power Supply Recommendations

10.1 Bulk Capacitance

Having an appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- · The highest current required by the motor system
- The capacitance and current capability of the power supply
- · The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed DC, brushless DC, stepper)
- · The motor braking method

The inductance between the power supply and the motor drive system limits the rate at which current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in VM voltage. When adequate bulk capacitance is used, the VM voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate bulk capacitor.

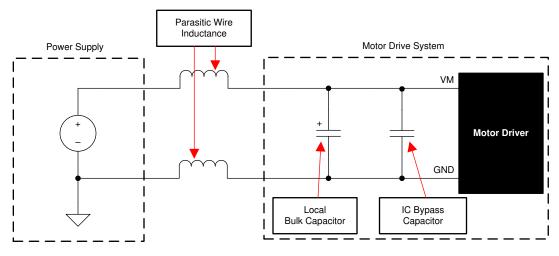


图 10-1. Example Setup of Motor Drive System With External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.

11 Layout

11.1 Layout Guidelines

The bulk capacitor should be placed to minimize the distance of the high-current path through the motor driver device. The connecting metal trace widths should be as wide as possible, and numerous vias should be used when connecting PCB layers. These practices minimize parasitic inductance and allow the bulk capacitor to deliver high current.

Small-value capacitors should be ceramic, and placed closely to device pins.

The high-current device outputs should use wide metal traces.

To reduce noise coupling and EMI interference from large transient currents into small-current signal paths, grounding should be partitioned between PGND and AGND. TI recommends connecting all non-power stage circuitry (including the thermal pad) to AGND to reduce parasitic effects and improve power dissipation from the device. Optionally, GND_BK can be split. Ensure grounds are connected through net-ties or wide resistors to reduce voltage offsets and maintain gate driver performance.

The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias helps dissipate the $I^2 \times R_{DS(on)}$ heat that is generated in the device.

To improve thermal performance, maximize the ground area that is connected to the thermal pad ground across all possible layers of the PCB. Using thick copper pours can lower the junction-to-air thermal resistance and improve thermal dissipation from the die surface.

Separate the SW_BK and FB_BK traces with ground separation to reduce buck switching from coupling as noise into the buck outer feedback loop. Widen the FB_BK trace as much as possible to allow for faster load switching.

图 11-1 shows a layout example for the MCT8317A. Also, for layout example, refer to MCT8317A EVM.

MCT8317A

11.2 Layout Example

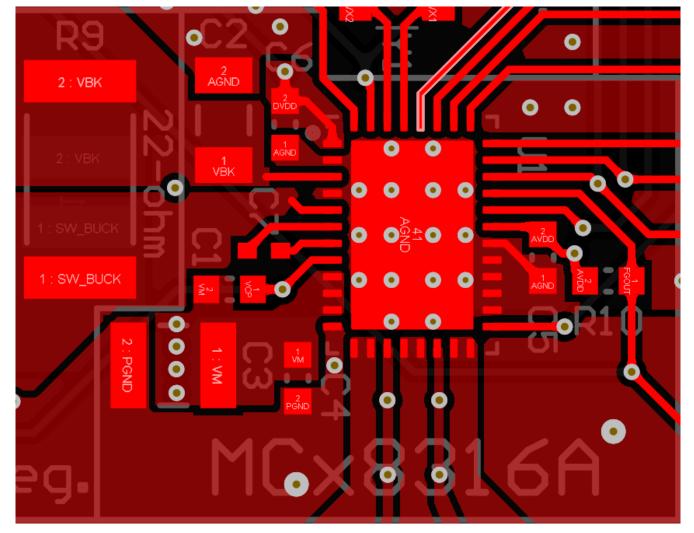


图 11-1. Recommended Layout Example

11.3 Thermal Considerations

The MCT8317A has over temperature shutdown (OTS) as previously described. A die temperature in excess of 145°C (minimally) disables the device until the temperature drops to a safe level.

Any tendency of the device to enter over temperature shutdown is an indication of excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

11.3.1 Power Dissipation

The power dissipated in the output FET resistance (R_{DS(on)}) dominates power dissipation in MCT8317A.

At start-up and fault conditions, the FET current is much higher than normal operating FET current; remember to take these peak currents and their duration into consideration.

The total device power dissipation is the power dissipated in each of the three half-bridges added together along with standby power, LDO and buck regulator losses.

The maximum amount of power that the device can dissipate depends on ambient temperature and heatsinking.

Note that $R_{DS(on)}$ increases with temperature, so as the device heats, the power dissipation increases. Take this into consideration when sizing the heatsink.

A summary of equations for calculating each loss is shown below in 表 11-1.

表 11-1. Power Losses for MCT8317A

Loss type	MCT8317A				
Standby power	P _{standby} = VM x I _{VM_TA}				
LDO	$P_{LDO} = (V_{VIN_AVDD} \cdot V_{AVDD}) \times I_{AVDD}$				
FET conduction	$P_{CON} = 2 \times (I_{RMS(trap)})^2 \times R_{ds,on(TA)}$				
FET switching	P _{SW} = I _{PK(trap)} x V _{PK(trap)} x t _{rise/fall} x f _{PWM}				
Diode	P _{diode} = I _{PK(trap)} x V _{diode} x t _{dead} x f _{PWM}				

12 Device and Documentation Support

12.1 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.2 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

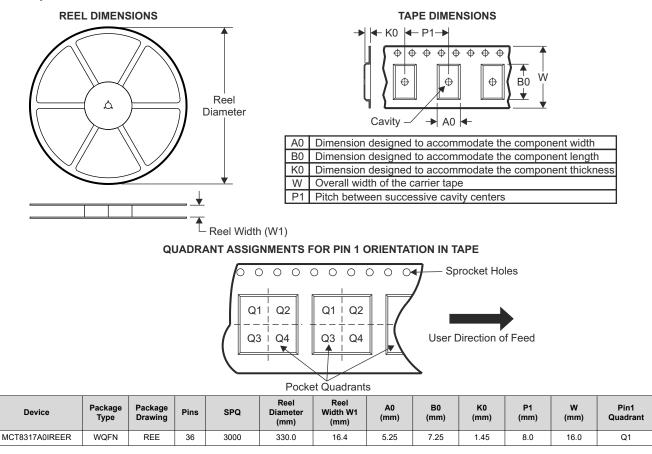
所有商标均为其各自所有者的财产。

12.3 静电放电警告

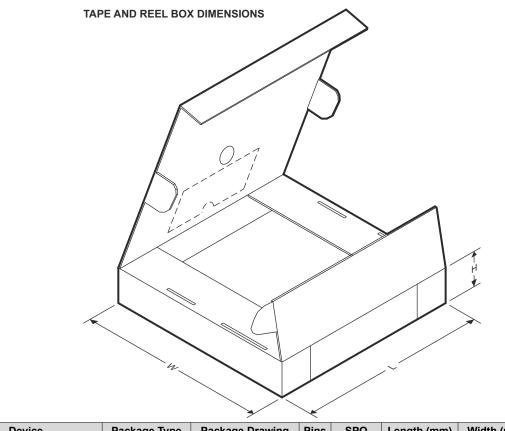
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.4 术语表

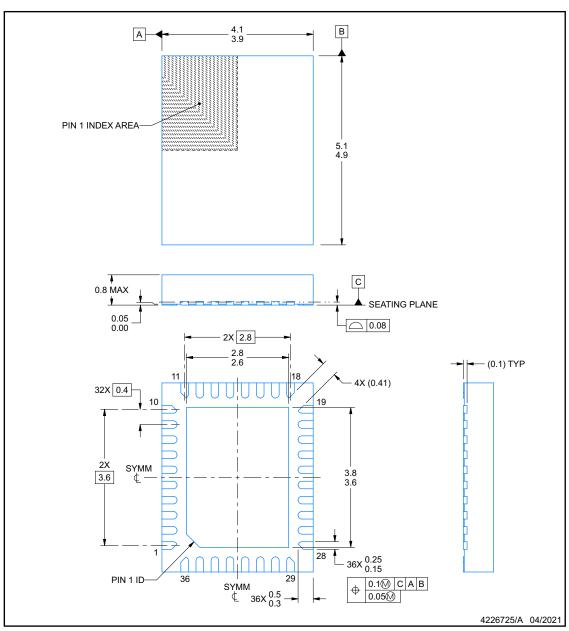

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information


The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

13.1 Tape and Reel Information

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MCT8317A0IREER	WQFN	REE	36	3000	367.0	367.0	38.0


REE0036A

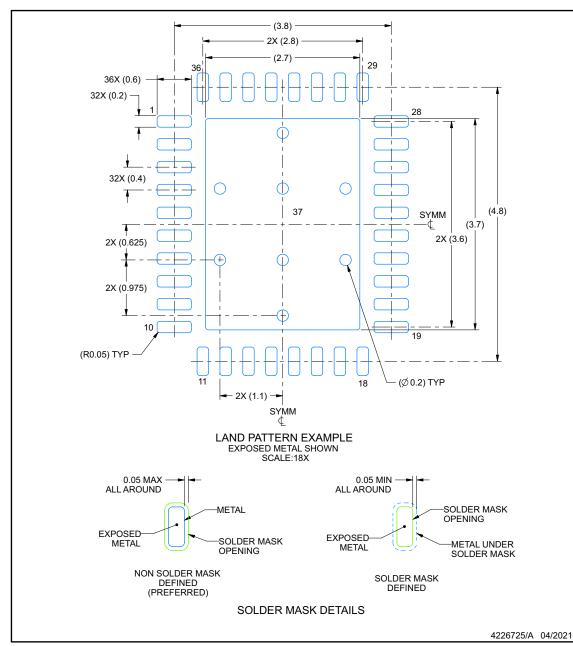
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
This drawing is subject to change without notice.
The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



REE0036A

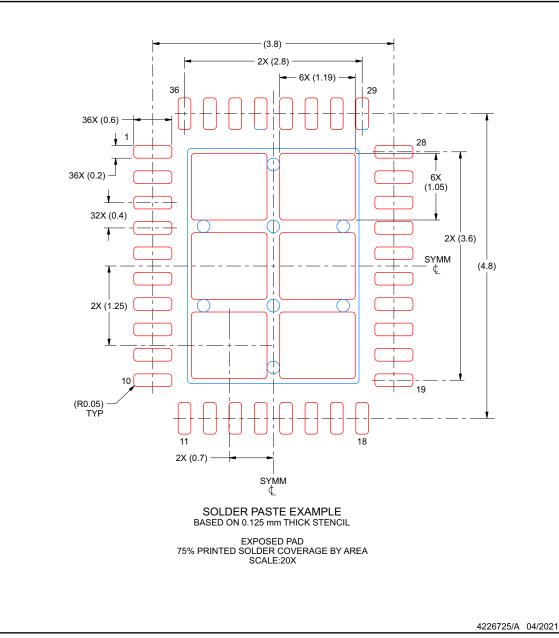
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).


REE0036A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
PMCT8317A0IREER	ACTIVE	WQFN	REE	36	5000	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司